Kivell Tracy L
Animal Postcranial Evolution Laboratory, Skeletal Biological Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
J Anat. 2016 Apr;228(4):569-94. doi: 10.1111/joa.12446. Epub 2016 Feb 16.
Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past.
古人类学中许多关于特定运动或操作行为进化的未解决争论,都源于对保存下来的外部化石形态功能意义的不同看法。然而,内部骨骼形态,尤其是小梁骨的可塑性,使其能够在生命过程中对机械负荷做出反应,这意味着它可以更深入地揭示个体一生中骨骼或关节的使用方式。在人类临床背景下,对小梁骨的分析已经有几十年的历史了。相比之下,将小梁骨作为一种重建现存和化石非人类灵长类动物关节位置、关节负荷以及最终行为的方法的研究则相对较新。自20世纪70年代末的首次二维研究和90年代的三维分析以来,小梁骨在重建灵长类动物行为方面的实用性不断提高,涵盖了实验研究、扩大的分类样本和骨骼元素,以及改进的方法。然而,这项工作,连同对人类和非灵长类哺乳动物的研究,也揭示了从小梁结构变化进行功能推断所固有的巨大复杂性。这篇综述阐述了目前对小梁骨功能适应性的理解,它是如何应用于类人猿以及其他灵长类动物的,最终,它如何被用于更好地解释化石类人猿和人类形态。由于化石记录限制我们主要只能从骨骼形态本身,通常是从孤立的骨骼来解释功能,因此对小梁结构的分析,理想情况下结合皮质结构和外部形态的分析,可以为重建过去的行为提供最佳资源。