Suppr超能文献

具有特征向量局部化的网络上的易感-感染-易感模型。

Susceptible-infected-susceptible model on networks with eigenvector localization.

作者信息

Wei Zong-Wen, Wang Bing-Hong

机构信息

Guangdong Province Key Laboratory of Popular High Performance Computers, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.

Department of Modern Physics, University of Science and Technology of China, Hefei 230027, China.

出版信息

Phys Rev E. 2020 Apr;101(4-1):042310. doi: 10.1103/PhysRevE.101.042310.

Abstract

It is a longstanding debate on the absence of threshold for susceptible-infected-susceptible (SIS) model on networks with finite second order moment of degree distribution. The eigenvector localization of the adjacency matrix for a network gives rise to the inactive Griffiths phase featuring slow decay of the activity localized around highly connected nodes due to the dynamical fluctuation. We show how it dramatically changes our understanding of the SIS model, opening up new possibilities for the debate. We derive the critical condition for Griffiths to active phase transition: on average, an infected node can further infect another one in the characteristic lifespan of the star subgraph composed of the node and its nearest neighbors. The system approaches the critical point of avoiding the irreversible dynamical fluctuation and the trap of absorbing state. As a signature of the phase transition, the infection density of a node is not only proportional to its degree, but also proportional to the exponentially growing lifespan of the star. And the divergence of the average lifespan of the stars is responsible for the vanishing threshold in the thermodynamic limit. The eigenvector localization exponentially reinforces the infection of highly connected nodes, while it inversely suppresses the infection of small-degree nodes.

摘要

对于度分布具有有限二阶矩的网络上的易感-感染-易感(SIS)模型不存在阈值这一问题,存在长期的争论。网络邻接矩阵的特征向量局部化导致了非活跃的格里菲斯相,其特征是由于动态涨落,活动在高度连接节点周围缓慢衰减。我们展示了这如何极大地改变我们对SIS模型的理解,为这场争论开辟了新的可能性。我们推导了从格里菲斯相到活跃相变的临界条件:平均而言,一个受感染节点在由该节点及其最近邻组成的星型子图的特征寿命内能够进一步感染另一个节点。系统接近避免不可逆动态涨落和吸收态陷阱的临界点。作为相变的一个标志,节点的感染密度不仅与其度成正比,还与星型子图指数增长的寿命成正比。并且星型子图平均寿命的发散导致了热力学极限下阈值的消失。特征向量局部化指数级地增强了高度连接节点的感染,而反向抑制了低度节点的感染。

相似文献

1
Susceptible-infected-susceptible model on networks with eigenvector localization.
Phys Rev E. 2020 Apr;101(4-1):042310. doi: 10.1103/PhysRevE.101.042310.
2
The relation between structural and functional connectivity patterns in complex brain networks.
Int J Psychophysiol. 2016 May;103:149-60. doi: 10.1016/j.ijpsycho.2015.02.011. Epub 2015 Feb 10.
3
Epidemic threshold of the susceptible-infected-susceptible model on complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062812. doi: 10.1103/PhysRevE.87.062812. Epub 2013 Jun 19.
4
Griffiths effects of the susceptible-infected-susceptible epidemic model on random power-law networks.
Phys Rev E. 2016 Mar;93(3):032322. doi: 10.1103/PhysRevE.93.032322. Epub 2016 Mar 28.
5
Survival time of the susceptible-infected-susceptible infection process on a graph.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032806. doi: 10.1103/PhysRevE.92.032806. Epub 2015 Sep 15.
6
Distinct types of eigenvector localization in networks.
Sci Rep. 2016 Jan 12;6:18847. doi: 10.1038/srep18847.
7
Localization of nonbacktracking centrality on dense subgraphs of sparse networks.
Phys Rev E. 2023 Jan;107(1-1):014301. doi: 10.1103/PhysRevE.107.014301.
8
Multiple transitions of the susceptible-infected-susceptible epidemic model on complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012816. doi: 10.1103/PhysRevE.91.012816. Epub 2015 Jan 22.
10
Rare regions of the susceptible-infected-susceptible model on Barabási-Albert networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042132. doi: 10.1103/PhysRevE.87.042132. Epub 2013 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验