Google Health, Palo Alto, CA, USA.
University of California, San Francisco, San Francisco, CA, USA.
Nat Med. 2020 Jun;26(6):900-908. doi: 10.1038/s41591-020-0842-3. Epub 2020 May 18.
Skin conditions affect 1.9 billion people. Because of a shortage of dermatologists, most cases are seen instead by general practitioners with lower diagnostic accuracy. We present a deep learning system (DLS) to provide a differential diagnosis of skin conditions using 16,114 de-identified cases (photographs and clinical data) from a teledermatology practice serving 17 sites. The DLS distinguishes between 26 common skin conditions, representing 80% of cases seen in primary care, while also providing a secondary prediction covering 419 skin conditions. On 963 validation cases, where a rotating panel of three board-certified dermatologists defined the reference standard, the DLS was non-inferior to six other dermatologists and superior to six primary care physicians (PCPs) and six nurse practitioners (NPs) (top-1 accuracy: 0.66 DLS, 0.63 dermatologists, 0.44 PCPs and 0.40 NPs). These results highlight the potential of the DLS to assist general practitioners in diagnosing skin conditions.
皮肤状况影响着 19 亿人。由于皮肤科医生短缺,大多数病例由诊断准确率较低的全科医生诊治。我们提出了一种深度学习系统(DLS),通过一家为 17 个地点服务的远程皮肤病学实践中收集的 16114 例去识别病例(照片和临床数据),提供皮肤状况的鉴别诊断。该 DLS 区分了 26 种常见皮肤疾病,占初级保健中所见病例的 80%,同时还提供了涵盖 419 种皮肤疾病的次要预测。在 963 例验证病例中,由三名 board-certified dermatologists 组成的旋转专家组确定了参考标准,DLS 与其他六名皮肤科医生、六名初级保健医生和六名护士从业者(NP)相比没有劣势(top-1 准确率:DLS 为 0.66,皮肤科医生为 0.63,初级保健医生为 0.44,护士从业者为 0.40)。这些结果突出了 DLS 辅助全科医生诊断皮肤疾病的潜力。
Nat Med. 2020-5-18
J Drugs Dermatol. 2012-4
J Ky Med Assoc. 1984-5
Skinmed. 2019-5-29
Acta Derm Venereol. 2014-3
Dermatol Pract Concept. 2025-7-31
NPJ Artif Intell. 2025
J Bioeth Inq. 2025-6-26
PeerJ Comput Sci. 2025-4-15
NPJ Digit Med. 2025-6-20
Aten Primaria. 2025-6-9
Fam Med. 2008
Am J Manag Care. 1997-10