Suppr超能文献

板层水平皮质骨的微拉伸性能和破坏机制。

Microtensile properties and failure mechanisms of cortical bone at the lamellar level.

机构信息

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.

出版信息

Acta Biomater. 2021 Jan 15;120:135-145. doi: 10.1016/j.actbio.2020.04.030. Epub 2020 May 16.

Abstract

Bone features a remarkable combination of toughness and strength which originates from its complex hierarchical structure and motivates its investigation on multiple length scales. Here, in situ microtensile experiments were performed on dry ovine osteonal bone for the first time at the length scale of a single lamella. The micromechanical response was brittle and revealed larger ultimate tensile strength compared to the macroscale (factor of 2.3). Ultimate tensile strength for axial and transverse specimens was 0.35 ± 0.05 GPa and 0.13 ± 0.02 GPa, respectively. A significantly greater strength anisotropy relative to compression was observed (axial to transverse strength ratio of 2.7:1 for tension, 1.3:1 for compression). Fracture surface and transmission electron microscopic analysis suggested that this may be rationalized by a change in failure mode from fibril-matrix interfacial shearing for axial specimens to fibril-matrix debonding in the transverse direction. An improved version of the classic Hashin's composite failure model was applied to describe lamellar bone strength as a function of fibril orientation. Together with our experimental observations, the model suggests that cortical bone strength at the lamellar level is remarkably tolerant to variations of fibrils orientation of about ±30°. This study highlights the importance of investigating bone's hierarchical organization at several length scales for gaining a deeper understanding of its macroscopic fracture behavior. STATEMENT OF SIGNIFICANCE: Understanding bone deformation and failure behavior at different length scales of its hierarchical structure is fundamental for the improvement of bone fracture prevention, as well as for the development of multifunctional bio-inspired materials combining toughness and strength. The experiments reported in this study shed light on the microtensile properties of dry primary osteonal bone and establish a baseline from which to start further investigations in more physiological conditions. Microtensile specimens were stronger than their macroscopic counterparts by a factor of 2.3. Lamellar bone strength seems remarkably tolerant to variations of the sub-lamellar fibril orientation with respect to the loading direction (±30°). This study underlines the importance of studying bone on all length scales for improving our understanding of bone's macroscopic mechanical response.

摘要

骨具有优异的韧性和强度组合,这源于其复杂的层次结构,并促使人们从多个长度尺度对其进行研究。在这里,首次在单个板层的长度尺度上对干燥的绵羊骨进行了原位微拉伸实验。微机械响应为脆性,与宏观尺度相比,显示出更大的极限拉伸强度(2.3 倍)。轴向和横向试样的极限拉伸强度分别为 0.35 ± 0.05GPa 和 0.13 ± 0.02GPa。观察到与压缩相比,强度各向异性显著增大(拉伸时轴向与横向的强度比为 2.7:1,压缩时为 1.3:1)。断裂表面和透射电子显微镜分析表明,这可以通过失效模式的变化来合理化,即轴向试样从纤维-基质界面剪切变为横向方向的纤维-基质脱粘。经典的 Hashin 复合材料失效模型的改进版本被应用于描述板层骨强度作为纤维取向的函数。结合我们的实验观察,该模型表明,在板层水平上,皮质骨的强度对纤维取向变化约±30°非常耐受。这项研究强调了在几个长度尺度上研究骨的层次组织对于深入了解其宏观断裂行为的重要性。

意义声明

了解骨的层次结构在不同长度尺度上的变形和失效行为对于改善骨骨折预防以及开发结合韧性和强度的多功能仿生材料至关重要。本研究报告中的实验揭示了干燥初级骨单位的微拉伸特性,并建立了一个基准,在此基础上可以在更生理的条件下进一步研究。微拉伸试样比宏观对照物强 2.3 倍。板层骨强度似乎对亚板层纤维相对于加载方向的取向变化具有惊人的耐受性(±30°)。这项研究强调了在所有长度尺度上研究骨的重要性,以提高我们对骨宏观力学响应的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验