College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China.
College of Information Engineering, Minzu University of China, Beijing 100081, China.
Sensors (Basel). 2020 May 16;20(10):2837. doi: 10.3390/s20102837.
Computer-aided algorithm plays an important role in disease diagnosis through medical images. As one of the major cancers, lung cancer is commonly detected by computer tomography. To increase the survival rate of lung cancer patients, an early-stage diagnosis is necessary. In this paper, we propose a new structure, multi-level cross residual convolutional neural network (ML-xResNet), to classify the different types of lung nodule malignancies. ML-xResNet is constructed by three-level parallel ResNets with different convolution kernel sizes to extract multi-scale features of the inputs. Moreover, the residuals are connected not only with the current level but also with other levels in a crossover manner. To illustrate the performance of ML-xResNet, we apply the model to process ternary classification (benign, indeterminate, and malignant lung nodules) and binary classification (benign and malignant lung nodules) of lung nodules, respectively. Based on the experiment results, the proposed ML-xResNet achieves the best results of 85.88% accuracy for ternary classification and 92.19% accuracy for binary classification, without any additional handcrafted preprocessing algorithm.
计算机辅助算法通过医学图像在疾病诊断中发挥着重要作用。肺癌作为主要癌症之一,通常通过计算机断层扫描来检测。为了提高肺癌患者的存活率,早期诊断是必要的。在本文中,我们提出了一种新的结构,多级交叉残差卷积神经网络(ML-xResNet),用于对不同类型的肺结节恶性肿瘤进行分类。ML-xResNet 由三个具有不同卷积核大小的并行 ResNets 构建,以提取输入的多尺度特征。此外,残差不仅与当前层相连,而且以交叉方式与其他层相连。为了说明 ML-xResNet 的性能,我们分别应用该模型对肺结节的三分类(良性、不确定和恶性肺结节)和二分类(良性和恶性肺结节)进行处理。基于实验结果,所提出的 ML-xResNet 在三分类中达到了 85.88%的最佳准确率,在二分类中达到了 92.19%的最佳准确率,无需任何额外的手工预处理算法。