IEEE Trans Med Imaging. 2020 Mar;39(3):718-728. doi: 10.1109/TMI.2019.2934577. Epub 2019 Aug 12.
Lung cancer is the leading cause of cancer deaths worldwide and early diagnosis of lung nodule is of great importance for therapeutic treatment and saving lives. Automated lung nodule analysis requires both accurate lung nodule benign-malignant classification and attribute score regression. However, this is quite challenging due to the considerable difficulty of lung nodule heterogeneity modeling and the limited discrimination capability on ambiguous cases. To solve these challenges, we propose a Multi-Task deep model with Margin Ranking loss (referred as MTMR-Net) for automated lung nodule analysis. Compared to existing methods which consider these two tasks separately, the relatedness between lung nodule classification and attribute score regression is explicitly explored in a cause-and-effect manner within our multi-task deep model, which can contribute to the performance gains of both tasks. The results of different tasks can be yielded simultaneously for assisting the radiologists in diagnosis interpretation. Furthermore, a Siamese network with a margin ranking loss is elaborately designed to enhance the discrimination capability on ambiguous nodule cases. To further explore the internal relationship between two tasks and validate the effectiveness of the proposed model, we use the recursive feature elimination method to iteratively rank the most malignancy-related features. We validate the efficacy of our method MTMR-Net on the public benchmark LIDC-IDRI dataset. Extensive experiments show that the diagnosis results with internal relationship explicitly explored in our model has met some similar patterns in clinical usage and also demonstrate that our approach can achieve competitive classification performance and more accurate scoring on attributes over the state-of-the-arts. Codes are publicly available at: https://github.com/CaptainWilliam/MTMR-NET.
肺癌是全球癌症死亡的主要原因,早期诊断肺结节对于治疗和挽救生命至关重要。自动化肺结节分析既需要准确的肺结节良恶性分类,也需要进行属性评分回归。然而,由于肺结节异质性建模的相当难度以及对模糊病例的有限鉴别能力,这是极具挑战性的。为了解决这些挑战,我们提出了一种具有边界排序损失的多任务深度学习模型(简称 MTMR-Net),用于自动化肺结节分析。与分别考虑这两个任务的现有方法相比,我们的多任务深度学习模型以因果关系的方式明确探索了肺结节分类和属性评分回归之间的相关性,这有助于提高两个任务的性能。不同任务的结果可以同时生成,以帮助放射科医生进行诊断解释。此外,精心设计了一个带有边界排序损失的孪生网络,以增强对模糊结节病例的鉴别能力。为了进一步探索两个任务之间的内在关系,并验证所提出模型的有效性,我们使用递归特征消除方法迭代地对最具恶性相关性的特征进行排序。我们在公共基准 LIDC-IDRI 数据集上验证了我们的方法 MTMR-Net 的功效。广泛的实验表明,我们模型中明确探索的内部关系的诊断结果与临床应用中的某些模式相吻合,并且还证明了我们的方法可以在分类性能上达到竞争水平,并在属性评分上更加准确,优于现有的方法。代码可在 https://github.com/CaptainWilliam/MTMR-NET 上获取。