Suppr超能文献

分枝杆菌中独特中间体脱氢-F-0合成的细胞和结构基础

Cellular and Structural Basis of Synthesis of the Unique Intermediate Dehydro-F-0 in Mycobacteria.

作者信息

Grinter Rhys, Ney Blair, Brammananth Rajini, Barlow Christopher K, Cordero Paul R F, Gillett David L, Izoré Thierry, Cryle Max J, Harold Liam K, Cook Gregory M, Taiaroa George, Williamson Deborah A, Warden Andrew C, Oakeshott John G, Taylor Matthew C, Crellin Paul K, Jackson Colin J, Schittenhelm Ralf B, Coppel Ross L, Greening Chris

机构信息

School of Biological Sciences, Monash University, Clayton, VIC, Australia

Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.

出版信息

mSystems. 2020 May 19;5(3):e00389-20. doi: 10.1128/mSystems.00389-20.

Abstract

F is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F in mycobacteria; it was suggested that phosphoenolpyruvate served as a metabolic precursor for this pathway, rather than 2-phospholactate as long proposed, but these findings were subsequently challenged. In this work, we combined metabolomic, genetic, and structural analyses to resolve these discrepancies and determine the basis of F biosynthesis in mycobacterial cells. We show that, in whole cells of , phosphoenolpyruvate rather than 2-phospholactate stimulates F biosynthesis. Analysis of F biosynthesis intermediates present in cells harboring genetic deletions at each step of the biosynthetic pathway confirmed that phosphoenolpyruvate is then used to produce the novel precursor compound dehydro-F-0. To determine the structural basis of dehydro-F-0 production, we solved high-resolution crystal structures of the enzyme responsible (FbiA) in apo-, substrate-, and product-bound forms. These data show the essential role of a single divalent cation in coordinating the catalytic precomplex of this enzyme and demonstrate that dehydro-F-0 synthesis occurs through a direct substrate transfer mechanism. Together, these findings resolve the biosynthetic pathway of F in mycobacteria and have significant implications for understanding the emergence of antitubercular prodrug resistance. Mycobacteria are major environmental microorganisms and cause many significant diseases, including tuberculosis. Mycobacteria make an unusual vitamin-like compound, F, and use it to both persist during stress and resist antibiotic treatment. Understanding how mycobacteria make F is important, as this process can be targeted to create new drugs to combat infections like tuberculosis. In this study, we show that mycobacteria make F in a way that is different from other bacteria. We studied the molecular machinery that mycobacteria use to make F, determining the chemical mechanism for this process and identifying a novel chemical intermediate. These findings also have clinical relevance, given that two new prodrugs for tuberculosis treatment are activated by F.

摘要

F是一种被多种细菌和古菌使用的低电位氧化还原辅因子。在分枝杆菌中,这种辅因子具有多种作用,包括适应氧化还原应激、细胞壁生物合成以及激活临床抗结核前体药物pretomanid和delamanid。最近的一项生化研究提出了分枝杆菌中F的修订生物合成途径;有人认为磷酸烯醇丙酮酸是该途径的代谢前体,而不是长期以来所认为的2-磷酸乳酸,但这些发现随后受到了质疑。在这项工作中,我们结合了代谢组学、遗传学和结构分析来解决这些差异,并确定分枝杆菌细胞中F生物合成的基础。我们表明,在[具体分枝杆菌名称]的全细胞中,磷酸烯醇丙酮酸而非2-磷酸乳酸刺激F的生物合成。对在生物合成途径的每个步骤都存在基因缺失的[具体分枝杆菌名称]细胞中存在的F生物合成中间体的分析证实,磷酸烯醇丙酮酸随后被用于产生新型前体化合物脱氢-F-0。为了确定脱氢-F-0产生的结构基础,我们解析了负责该过程的酶(FbiA)在无底物、底物结合和产物结合形式下的高分辨率晶体结构。这些数据显示了单个二价阳离子在协调该酶的催化前复合物中的关键作用,并证明脱氢-F-0的合成通过直接底物转移机制发生。总之,这些发现解决了分枝杆菌中F的生物合成途径,对理解抗结核前体药物耐药性的出现具有重要意义。分枝杆菌是主要的环境微生物,会引发许多重大疾病,包括结核病。分枝杆菌会制造一种不寻常的类维生素化合物F,并利用它在应激期间存活以及抵抗抗生素治疗。了解分枝杆菌如何制造F很重要,因为这个过程可以成为开发对抗结核病等感染的新药的靶点。在这项研究中,我们表明分枝杆菌制造F的方式与其他细菌不同。我们研究了分枝杆菌用于制造F的分子机制,确定了这个过程的化学机制并鉴定出一种新型化学中间体。鉴于两种用于治疗结核病的新前体药物由F激活,这些发现也具有临床相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/113f/7253369/02fc2cfcfcaf/mSystems.00389-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验