Suppr超能文献

通过适应性实验室进化和理性工程提高酿酒酵母中 D-木糖的利用和异丁醇的生产。

Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering.

机构信息

National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand.

出版信息

J Ind Microbiol Biotechnol. 2020 Jul;47(6-7):497-510. doi: 10.1007/s10295-020-02281-9. Epub 2020 May 19.

Abstract

As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies-adaptive laboratory evolution and rational metabolic engineering-to improve the yeast Saccharomyces cerevisiae's ability to utilize D-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast's specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of D-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain's isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.

摘要

随着气候变化的影响变得明显,代谢工程师和合成生物学家正在探索可持续的交通燃料来源。设计和工程微生物从可再生原料生产汽油、柴油和喷气燃料化合物,可以显著降低我们对化石燃料的依赖,并降低温室气体的排放。在过去的 20 年里,大量的工作已经导致了微生物菌株的发展,用于从 C5 和 C6 糖生产先进的燃料化合物。在这项工作中,我们结合了两种策略——适应性实验室进化和理性代谢工程——来提高酵母酿酒酵母利用 D-木糖的能力,D-木糖是生物质中主要的 C5 糖,并生产先进的生物燃料异丁醇。对几个进化菌株进行全基因组重测序,然后进行反向工程,确定了两个单核苷酸突变,一个在 CCR4 中,另一个在 TIF1 中,分别使酵母的比生长速率提高了 23%和 14%。这两个基因以前都没有被认为与 D-木糖的利用有关。进一步微调异丁醇途径中瓶颈酶的表达水平,使进化菌株的异丁醇产量进一步提高到 92.9±4.4 mg/L(比异丁醇产量为 50.2±2.6 mg/g DCW),比未进化菌株提高了 90%的产量和 110%的比产量。我们希望我们的工作将为先进的生物燃料异丁醇的经济途径奠定基础,并使含有木糖的生物质得到有效的利用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验