Suppr超能文献

基于影像组学的脑胶质瘤 Ki-67 和 p53 水平预测模型

Radiomic prediction models for the level of Ki-67 and p53 in glioma.

机构信息

Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.

Department of Life Sciences, GE Healthcare, Hangzhou, China.

出版信息

J Int Med Res. 2020 May;48(5):300060520914466. doi: 10.1177/0300060520914466.

Abstract

OBJECTIVE

To identify glioma radiomic features associated with proliferation-related Ki-67 antigen and cellular tumour antigen p53 levels, common immunohistochemical markers for differentiating benign from malignant tumours, and to generate radiomic prediction models.

METHODS

Patients with glioma, who were scanned before therapy using standard brain magnetic resonance imaging (MRI) protocols on T1 and T2 weighted imaging, were included. For each patient, regions-of-interest (ROI) were drawn based on tumour and peritumoral areas (5/10/15/20 mm), and features were identified using feature calculations, and used to create and assess logistic regression models for Ki-67 and p53 levels.

RESULTS

A total of 92 patients were included. The best area under the curve (AUC) for the Ki-67 model was 0.773 for T2 weighted imaging in solid glioma (sensitivity, 0.818; specificity, 0.833), followed by a less reliable AUC of 0.773 (sensitivity, 0.727; specificity 0.667) in 20-mm peritumoral areas. The highest AUC for the p53 model was 0.709 (sensitivity, 1; specificity, 0.4) for T2 weighted imaging in 10-mm peritumoral areas.

CONCLUSION

Using T2-weighted imaging, the prediction model for Ki-67 level in solid glioma tissue was better than the p53 model. The 20-mm and 10-mm peritumoral areas in the Ki-67 and p53 model, respectively, showed predictive effects, suggesting value in further research into areas without conventional MRI features.

摘要

目的

确定与增殖相关的 Ki-67 抗原和细胞肿瘤抗原 p53 水平相关的神经胶质瘤放射组学特征,这些特征是区分良恶性肿瘤的常用免疫组织化学标志物,并生成放射组学预测模型。

方法

纳入了在治疗前使用标准脑磁共振成像(MRI)T1 和 T2 加权成像进行扫描的神经胶质瘤患者。对于每位患者,根据肿瘤和肿瘤周围区域(5/10/15/20mm)绘制感兴趣区域(ROI),并使用特征计算方法识别特征,用于创建和评估 Ki-67 和 p53 水平的逻辑回归模型。

结果

共纳入 92 例患者。Ki-67 模型在实体神经胶质瘤 T2 加权成像中的最佳曲线下面积(AUC)为 0.773(敏感性为 0.818,特异性为 0.833),其次是肿瘤周围 20mm 区域的 AUC 为 0.773(敏感性为 0.727,特异性为 0.667)。p53 模型在肿瘤周围 10mm 区域的 T2 加权成像中的 AUC 最高为 0.709(敏感性为 1,特异性为 0.4)。

结论

使用 T2 加权成像,实体神经胶质瘤组织中 Ki-67 水平的预测模型优于 p53 模型。Ki-67 和 p53 模型中的 20mm 和 10mm 肿瘤周围区域分别显示出预测作用,表明在进一步研究没有常规 MRI 特征的区域方面具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c03/7241212/7d944bb4d587/10.1177_0300060520914466-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验