Kong Doo-Sik, Kim Junhyung, Ryu Gyuha, You Hye-Jin, Sung Joon Kyung, Han Yong Hee, Shin Hye-Mi, Lee In-Hee, Kim Sung-Tae, Park Chul-Kee, Choi Seung Hong, Choi Jeong Won, Seol Ho Jun, Lee Jung-Il, Nam Do-Hyun
Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea.
Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.
Oncotarget. 2018 Jan 5;9(5):6336-6345. doi: 10.18632/oncotarget.23975. eCollection 2018 Jan 19.
Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.
在利用现有成像模式的研究领域中,定量成像生物标志物越来越多地出现。我们旨在识别能够代表肿瘤基因变化的良好替代放射组学特征,从而建立预测治疗结果的非侵入性方法。从2012年5月到2014年6月,我们从三星医疗中心数据登记处回顾性地确定了65例未经治疗的胶质母细胞瘤患者,并获取了可用的临床信息。为所有65例原发性胶质母细胞瘤患者获取了术前磁共振成像数据。从表观扩散系数和灌注图像等结构和生理图像中半自动提取了总共82个成像特征,包括一阶统计量、体积和大小特征。使用商业软件NordicICE,我们进行了定量成像分析,并收集了由放射表型参数组成的数据集。无监督聚类方法显示,放射表型数据集由三个聚类组成。每个聚类代表胶质母细胞瘤的一种独特分子分类;经典型、前神经元和神经元型以及间充质型。这些聚类也反映了不同的临床结果。我们发现提取的成像特征并不代表拷贝数变异和体细胞突变。定量放射组学特征为预测分子表型和治疗结果提供了潜在证据。放射组学图谱更能代表转录组表型。