Suppr超能文献

通过将城市增长预测与未来洪水风险模型相结合推进情景规划。

Advancing Scenario Planning through Integrating Urban Growth Prediction with Future Flood Risk Models.

作者信息

Kim Youjung, Newman Galen

机构信息

Texas A&M University, College Station.

出版信息

Comput Environ Urban Syst. 2020 Jul;82. doi: 10.1016/j.compenvurbsys.2020.101498. Epub 2020 Apr 24.

Abstract

High uncertainty about future urbanization and flood risk conditions limits the ability to increase resiliency in traditional scenario-based urban planning. While scenario planning integrating urban growth prediction modeling is becoming more common, these models have not been effectively linked with future flood plain changes due to sea level rise. This study advances scenario planning by integrating urban growth prediction models with flood risk scenarios. The Land Transformation Model, a land change prediction model using a GIS based artificial neural network, is used to predict future urban growth scenarios for Tampa, Florida, USA, and future flood risks are then delineated based on the current 100-year floodplain using NOAA level rise scenarios. A multi-level evaluation using three urban prediction scenarios (business as usual, growth as planned, and resilient growth) and three sea level rise scenarios (low, high, and extreme) is conducted to determine how prepared Tampa's current land use plan is in handling increasing resilient development in lieu of sea level rise. Results show that the current land use plan (growth as planned) decreases flood risk at the city scale but not always at the neighborhood scale, when compared to no growth regulations (business as usual). However, flood risk when growing according to the current plan is significantly higher when compared to all future growth residing outside of the 100-year floodplain (resilient growth). Understanding the potential effects of sea level rise depends on understanding the probabilities of future development options and extreme climate conditions.

摘要

未来城市化和洪水风险状况的高度不确定性限制了在传统情景式城市规划中增强复原力的能力。虽然整合城市增长预测模型的情景规划越来越普遍,但由于海平面上升,这些模型尚未与未来洪泛平原变化有效关联。本研究通过将城市增长预测模型与洪水风险情景相结合来推进情景规划。土地转化模型是一种基于地理信息系统(GIS)的人工神经网络土地变化预测模型,用于预测美国佛罗里达州坦帕市未来的城市增长情景,然后根据美国国家海洋和大气管理局(NOAA)的海平面上升情景,基于当前的百年洪泛平原划定未来洪水风险。使用三种城市预测情景(照常营业、按计划增长和弹性增长)和三种海平面上升情景(低、高和极端)进行多层次评估,以确定坦帕市当前的土地利用规划在应对海平面上升带来的日益增长的弹性发展方面准备得如何。结果表明,与无增长管制(照常营业)相比,当前的土地利用规划(按计划增长)在城市尺度上降低了洪水风险,但在社区尺度上并非总是如此。然而,与所有未来增长都位于百年洪泛平原之外(弹性增长)相比,按照当前规划增长时的洪水风险要高得多。了解海平面上升的潜在影响取决于了解未来发展选项和极端气候条件的可能性。

相似文献

5
Effects of spatial planning on future flood risks in urban environments.空间规划对城市环境未来洪灾风险的影响。
J Environ Manage. 2018 Nov 1;225:193-204. doi: 10.1016/j.jenvman.2018.07.090. Epub 2018 Aug 4.
9
Urban flood risk differentiation under land use scenario simulation.土地利用情景模拟下的城市洪水风险分化
iScience. 2023 Mar 23;26(4):106479. doi: 10.1016/j.isci.2023.106479. eCollection 2023 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验