Suppr超能文献

分子尺度热电学:一种最坏情况的设想。

Molecular-scale thermoelectricity: a worst-case scenario.

作者信息

Ismael Ali K, Lambert Colin J

机构信息

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.

出版信息

Nanoscale Horiz. 2020 Jul 1;5(7):1073-1080. doi: 10.1039/d0nh00164c. Epub 2020 May 20.

Abstract

This article highlights a novel strategy for designing molecules with high thermoelectric performance, which are resilient to fluctuations. In laboratory measurements of thermoelectric properties of single-molecule junctions and self-assembled monolayers, fluctuations in frontier orbital energies relative to the Fermi energy E of electrodes are an important factor, which determine average values of transport coefficients, such as the average Seebeck coefficient 〈S〉. In a worst-case scenario, where the relative value of E fluctuates uniformly over the HOMO-LUMO gap, a "worst-case scenario theorem" tells us that the average Seebeck coefficient will vanish unless the transmission coefficient at the LUMO and HOMO resonances take different values. This implies that junction asymmetry is a necessary condition for obtaining non-zero values of 〈S〉 in the presence of large fluctuations. This conclusion that asymmetry can drive high thermoelectric performance is supported by detailed simulations on 17 molecules using density functional theory. Importantly, junction asymmetry does not imply that the molecules themselves should be asymmetric. We demonstrate that symmetric molecules possessing a localised frontier orbital can achieve even higher thermoelectric performance than asymmetric molecules, because under laboratory conditions of slight symmetry breaking, such orbitals are 'silent' and do not contribute to transport. Consequently, transport is biased towards the nearest "non-silent" frontier orbital and leads to a high ensemble averaged Seebeck coefficient. This effect is demonstrated for a spatially-symmetric 1,2,3-triazole-based molecule, a rotaxane-hexayne macrocycle and a phthalocyanine.

摘要

本文重点介绍了一种设计具有高热电性能且能抵御波动的分子的新策略。在单分子结和自组装单分子层热电性质的实验室测量中,相对于电极费米能E的前沿轨道能量波动是一个重要因素,它决定了输运系数的平均值,如平均塞贝克系数〈S〉。在最坏的情况下,即E的相对值在HOMO - LUMO能隙上均匀波动时,一个“最坏情况定理”告诉我们,除非LUMO和HOMO共振处的传输系数取不同值,否则平均塞贝克系数将为零。这意味着结不对称是在存在大波动时获得非零〈S〉值的必要条件。关于17种分子的详细密度泛函理论模拟支持了不对称可驱动高热电性能这一结论。重要的是,结不对称并不意味着分子本身应该是不对称的。我们证明,具有局域前沿轨道的对称分子可比不对称分子实现更高的热电性能,因为在轻微对称性破缺的实验室条件下,此类轨道是“沉默的”,对输运没有贡献。因此,输运偏向最近的“非沉默”前沿轨道,导致高的系综平均塞贝克系数。对于空间对称的基于1,2,3 - 三唑的分子、轮烷 - 己炔大环和酞菁,展示了这种效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验