CAS Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei, China.
Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, USA.
Nature. 2020 May;581(7808):273-277. doi: 10.1038/s41586-020-2257-1. Epub 2020 May 20.
Conventional information processors convert information between different physical carriers for processing, storage and transmission. It seems plausible that quantum information will also be held by different physical carriers in applications such as tests of fundamental physics, quantum enhanced sensors and quantum information processing. Quantum controlled molecules, in particular, could transduce quantum information across a wide range of quantum bit (qubit) frequencies-from a few kilohertz for transitions within the same rotational manifold, a few gigahertz for hyperfine transitions, a few terahertz for rotational transitions, to hundreds of terahertz for fundamental and overtone vibrational and electronic transitions-possibly all within the same molecule. Here we demonstrate entanglement between the rotational states of a CaH molecular ion and the internal states of a Ca atomic ion. We extend methods used in quantum logic spectroscopy for pure-state initialization, laser manipulation and state readout of the molecular ion. The quantum coherence of the Coulomb coupled motion between the atomic and molecular ions enables subsequent entangling manipulations. The qubit addressed in the molecule has a frequency of either 13.4 kilohertz or 855 gigahertz, highlighting the versatility of molecular qubits. Our work demonstrates how molecules can transduce quantum information between qubits with different frequencies to enable hybrid quantum systems. We anticipate that our method of quantum control and measurement of molecules will find applications in quantum information science, quantum sensors, fundamental and applied physics, and controlled quantum chemistry.
传统信息处理器在处理、存储和传输信息时,会在不同的物理载体之间进行转换。在诸如基本物理检验、量子增强传感器和量子信息处理等应用中,量子信息似乎也将由不同的物理载体来承载。量子受控分子,特别是可以在很宽的量子比特(qubit)频率范围内转换量子信息-从相同旋转子层内的跃迁几兆赫兹,超精细跃迁几吉赫兹,旋转跃迁几太赫兹,到基本和泛频振动和电子跃迁的数百太赫兹-可能都在同一个分子内。在这里,我们演示了 CaH 分子离子的旋转态与 Ca 原子离子的内部态之间的纠缠。我们扩展了用于纯态初始化、激光操纵和分子离子状态读出的量子逻辑光谱学方法。原子离子和分子离子之间的库仑耦合运动的量子相干性使得后续的纠缠操纵成为可能。分子中寻址的量子位频率为 13.4 千赫兹或 855 吉赫兹,突出了分子量子位的多功能性。我们的工作展示了分子如何在不同频率的量子位之间转换量子信息,从而实现混合量子系统。我们预计,我们的分子量子控制和测量方法将在量子信息科学、量子传感器、基础和应用物理以及受控量子化学中得到应用。