Suppr超能文献

一种计算模型可追踪全肺结核分枝杆菌感染,并预测抑制其传播的因素。

A computational model tracks whole-lung Mycobacterium tuberculosis infection and predicts factors that inhibit dissemination.

机构信息

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America.

Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America.

出版信息

PLoS Comput Biol. 2020 May 20;16(5):e1007280. doi: 10.1371/journal.pcbi.1007280. eCollection 2020 May.

Abstract

Mycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb infection, are complex structures that form in lungs, composed of immune cells surrounding bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically contain and immunologically restrain bacteria growth, some granulomas are unable to control Mtb growth, leading to bacteria and infected cells leaving the granuloma and disseminating, either resulting in additional granuloma formation (local or non-local) or spread to airways or lymph nodes. Dissemination is associated with development of active TB. It is challenging to experimentally address specific mechanisms driving dissemination from TB lung granulomas. Herein, we develop a novel hybrid multi-scale computational model, MultiGran, that tracks Mtb infection within multiple granulomas in an entire lung. MultiGran follows cells, cytokines, and bacterial populations within each lung granuloma throughout the course of infection and is calibrated to multiple non-human primate (NHP) cellular, granuloma, and whole-lung datasets. We show that MultiGran can recapitulate patterns of in vivo local and non-local dissemination, predict likelihood of dissemination, and predict a crucial role for multifunctional CD8+ T cells and macrophage dynamics for preventing dissemination.

摘要

结核分枝杆菌(Mtb)是结核病(TB)的致病病原体,其每年导致的死亡人数超过其他任何传染病病原体。肉芽肿是 Mtb 感染的标志,是在肺部形成的复杂结构,由包围细菌、受感染细胞和干酪样坏死核心的免疫细胞组成。虽然肉芽肿有助于物理隔离和免疫抑制细菌生长,但有些肉芽肿无法控制 Mtb 的生长,导致细菌和受感染细胞离开肉芽肿并扩散,要么导致额外的肉芽肿形成(局部或非局部),要么传播到气道或淋巴结。传播与活动性 TB 的发展有关。从结核肺部肉芽肿中研究驱动传播的特定机制在实验上具有挑战性。在这里,我们开发了一种新的混合多尺度计算模型 MultiGran,该模型可跟踪整个肺部中多个肉芽肿内的 Mtb 感染。MultiGran 在整个感染过程中跟踪每个肺部肉芽肿内的细胞、细胞因子和细菌种群,并根据多个非人类灵长类动物(NHP)细胞、肉芽肿和全肺数据集进行校准。我们表明,MultiGran 可以再现体内局部和非局部传播的模式,预测传播的可能性,并预测多功能 CD8+T 细胞和巨噬细胞动态对于防止传播的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8694/7239387/c8fb0a7ccc8c/pcbi.1007280.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验