Klesse Stefan, DeRose Robert Justin, Babst Flurin, Black Bryan A, Anderegg Leander D L, Axelson Jodi, Ettinger Ailene, Griesbauer Hardy, Guiterman Christopher H, Harley Grant, Harvey Jill E, Lo Yueh-Hsin, Lynch Ann M, O'Connor Christopher, Restaino Christina, Sauchyn Dave, Shaw John D, Smith Dan J, Wood Lisa, Villanueva-Díaz Jose, Evans Margaret E K
Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USA.
Swiss Federal Research Institute WSL, Swiss Forest Protection, Birmensdorf, Switzerland.
Glob Chang Biol. 2020 Sep;26(9):5146-5163. doi: 10.1111/gcb.15170. Epub 2020 Jun 30.
A central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree-ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space-for-time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas-fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed-effects model to capture ring-width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas-fir's range; narrower rings and stronger climate sensitivity occurred across the semi-arid interior. Ring-width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas-fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed-effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree-ring networks and results as a calibration target for next-generation vegetation models.
全球变化研究中的一个核心挑战是根据过去的观测结果预测系统未来的行为。在过去十年中,树木年轮数据越来越多地被用于预测未来气候条件下树木的生长和森林生态系统的脆弱性。但是,当未来与过去不同时,树木生长对过去气候变化的响应如何能够预测未来呢?空间换时间替代法(SFTS)是克服外推问题的一种方法:假定在未来变暖的某个给定地点的响应将遵循如今变暖地点的响应。在此,我们评估了一种空间换时间替代法,用于预测花旗松(Pseudotsuga menziesii)未来的生长情况,花旗松在北美占据了异常广阔的环境空间。我们拟合了一个分层混合效应模型,以捕捉年轮宽度随气候的空间和时间变化的变异性。我们发现生产力和气候敏感性呈现相反的梯度,在花旗松分布范围的湿润沿海地区生长速率最高,对年际气候变化的响应最弱;而在半干旱内陆地区,年轮较窄且气候敏感性较强。年轮宽度对空间与时间温度变化的响应在符号上相反,这表明由局部适应和其他缓慢过程导致的生产力空间变化,无法用于预测由快速气候变化引起的生产力变化。因此,在预测未来树木生长时,我们仅替换了气候敏感性。预计花旗松分布的大部分地区生长都会下降,在美国内陆西部半干旱地区相对下降幅度最大,而在湿润的太平洋西北部最小。我们进一步强调了混合效应建模在复兴树木年轮生态学的一个概念基石——库克1987年的总体生长模型方面的优势,以及将树木年轮网络和结果用作下一代植被模型校准目标的巨大潜力。