Suppr超能文献

一种用于研究小而可变的尖峰延迟刺激和变化点检测增加的模型。

A Model for the Study of the Increase in Stimulus and Change Point Detection with Small and Variable Spiking Delays.

机构信息

Institute of Mathematics, Johann Wolfgang Goethe University, Frankfurt (Main) 60325, Germany

出版信息

Neural Comput. 2020 Jul;32(7):1277-1321. doi: 10.1162/neco_a_01285. Epub 2020 May 20.

Abstract

Precise timing of spikes between different neurons has been found to convey reliable information beyond the spike count. In contrast, the role of small and variable spiking delays, as reported, for example, in the visual cortex, remains largely unclear. This issue becomes particularly important considering the high speed of neuronal information processing, which is assumed to be based on only a few milliseconds within each processing step. We investigate the role of small and variable spiking delays with a parsimonious stochastic spiking model that is strongly motivated by experimental observations. The model contains only two parameters for the response of a neuron to one stimulus, describing directly the rate and the delay, or phase. Within the theoretical model, we specifically investigate two quantities, the probability of correct stimulus detection and the probability of correct change point detection, as a function of these parameters and within short periods of time. Optimal combinations of the two parameters across stimuli are derived that maximize these probabilities and enable comparison of pure rate, pure phase, and combined codes. In particular, the gain in correct detection probability when adding small and variable spiking delays to pure rate coding increases with the number of stimuli. More interesting, small and variable spiking delays can considerably improve the process of detecting changes in the stimulus, while also decreasing the probability of false alarms and thus increasing robustness and speed of change point detection. The results are compared to empirical spike train recordings of neurons in the visual cortex reported earlier in response to a number of visual stimuli. The results suggest that near-optimal combinations of rate and phase parameters may be implemented in the brain and that adding phase information could particularly increase the quality of change point detection in cases of highly similar stimuli.

摘要

已经发现,不同神经元之间的精确尖峰时间比尖峰计数更能传递可靠的信息。相比之下,尽管已经有报道称,在视觉皮层中存在小而可变的尖峰延迟,但这些延迟的作用在很大程度上仍不清楚。考虑到神经元信息处理的高速,这个问题变得尤为重要,因为在每个处理步骤中,都假设只需要几毫秒的时间。我们使用一个简洁的随机尖峰模型来研究小而可变的尖峰延迟的作用,这个模型是受到实验观察的强烈启发而建立的。该模型仅包含一个神经元对一个刺激的响应的两个参数,直接描述了神经元的反应率和延迟,或相位。在理论模型中,我们特别研究了两个数量,即正确刺激检测的概率和正确变化点检测的概率,作为这些参数的函数,并在短时间内进行研究。我们得出了最优的参数组合,这些参数可以最大化这些概率,并比较纯率码、纯相位码和组合码。特别是,当将小而可变的尖峰延迟添加到纯率编码中时,正确检测概率的增益随着刺激数量的增加而增加。更有趣的是,小而可变的尖峰延迟可以显著提高检测刺激变化的过程,同时降低误报的概率,从而提高变化点检测的鲁棒性和速度。这些结果与之前报道的视觉皮层神经元对一些视觉刺激的尖峰记录进行了比较。结果表明,在大脑中可能实现了接近最优的率和相位参数组合,并且在处理高度相似的刺激时,添加相位信息可以特别提高变化点检测的质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验