Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany.
PLoS Comput Biol. 2021 Jun 1;17(6):e1008927. doi: 10.1371/journal.pcbi.1008927. eCollection 2021 Jun.
Information processing can leave distinct footprints on the statistics of neural spiking. For example, efficient coding minimizes the statistical dependencies on the spiking history, while temporal integration of information may require the maintenance of information over different timescales. To investigate these footprints, we developed a novel approach to quantify history dependence within the spiking of a single neuron, using the mutual information between the entire past and current spiking. This measure captures how much past information is necessary to predict current spiking. In contrast, classical time-lagged measures of temporal dependence like the autocorrelation capture how long-potentially redundant-past information can still be read out. Strikingly, we find for model neurons that our method disentangles the strength and timescale of history dependence, whereas the two are mixed in classical approaches. When applying the method to experimental data, which are necessarily of limited size, a reliable estimation of mutual information is only possible for a coarse temporal binning of past spiking, a so-called past embedding. To still account for the vastly different spiking statistics and potentially long history dependence of living neurons, we developed an embedding-optimization approach that does not only vary the number and size, but also an exponential stretching of past bins. For extra-cellular spike recordings, we found that the strength and timescale of history dependence indeed can vary independently across experimental preparations. While hippocampus indicated strong and long history dependence, in visual cortex it was weak and short, while in vitro the history dependence was strong but short. This work enables an information-theoretic characterization of history dependence in recorded spike trains, which captures a footprint of information processing that is beyond time-lagged measures of temporal dependence. To facilitate the application of the method, we provide practical guidelines and a toolbox.
信息处理可以在神经发放的统计数据中留下明显的痕迹。例如,高效编码最小化了对发放历史的统计依赖性,而信息的时间整合可能需要在不同的时间尺度上维持信息。为了研究这些痕迹,我们开发了一种新的方法来量化单个神经元发放中的历史依赖性,使用整个过去和当前发放之间的互信息。这个度量捕获了过去信息中有多少是预测当前发放所必需的。相比之下,像自相关这样的经典时间滞后的时间依赖性度量则捕获了潜在冗余的过去信息可以被读取的时间长度。令人惊讶的是,我们发现对于模型神经元,我们的方法可以分离历史依赖性的强度和时间尺度,而在经典方法中,这两个是混合在一起的。当将该方法应用于实验数据时,由于实验数据的大小有限,只有在对过去发放进行粗略的时间分箱(称为过去嵌入)时,才能可靠地估计互信息。为了仍然考虑到活神经元的极大不同的发放统计数据和潜在的长历史依赖性,我们开发了一种嵌入优化方法,该方法不仅改变了过去分箱的数量和大小,而且还改变了过去分箱的指数拉伸。对于细胞外的尖峰记录,我们发现历史依赖性的强度和时间尺度确实可以在不同的实验准备中独立变化。虽然海马体显示出强烈的长历史依赖性,但在视觉皮层中,它是弱的和短的,而在体外,历史依赖性是强的但短的。这项工作使得对记录的尖峰序列中的历史依赖性进行信息论特征描述成为可能,这种方法捕获了超越时间滞后的时间依赖性度量的信息处理痕迹。为了方便该方法的应用,我们提供了实用的指南和工具箱。