Suppr超能文献

一种评估刺激驱动神经元之间成对和多向同步性的框架。

A framework for evaluating pairwise and multiway synchrony among stimulus-driven neurons.

机构信息

Department of Statistics and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

出版信息

Neural Comput. 2012 Aug;24(8):2007-32. doi: 10.1162/NECO_a_00307. Epub 2012 Apr 17.

Abstract

Several authors have previously discussed the use of log-linear models, often called maximum entropy models, for analyzing spike train data to detect synchrony. The usual log-linear modeling techniques, however, do not allow time-varying firing rates that typically appear in stimulus-driven (or action-driven) neurons, nor do they incorporate non-Poisson history effects or covariate effects. We generalize the usual approach, combining point-process regression models of individual neuron activity with log-linear models of multiway synchronous interaction. The methods are illustrated with results found in spike trains recorded simultaneously from primary visual cortex. We then assess the amount of data needed to reliably detect multiway spiking.

摘要

几位作者之前曾讨论过使用对数线性模型(通常称为最大熵模型)来分析尖峰序列数据以检测同步性。然而,常用的对数线性建模技术不允许出现于刺激驱动(或动作驱动)神经元中的时变发放率,也不包括非泊松历史效应或协变量效应。我们推广了常用的方法,将单个神经元活动的点过程回归模型与多向同步交互的对数线性模型相结合。该方法通过从初级视觉皮层同时记录的尖峰序列中获得的结果进行说明。然后,我们评估了检测多向尖峰所需的可靠数据量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9d/3374919/66741aa46dc1/nihms-360677-f0001.jpg

相似文献

9
Estimating the temporal interval entropy of neuronal discharge.估计神经元放电的时间间隔熵。
Neural Comput. 2004 May;16(5):941-70. doi: 10.1162/089976604773135050.

引用本文的文献

1
Computational Neuroscience: Mathematical and Statistical Perspectives.计算神经科学:数学与统计视角
Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8.
2
Adjusted regularization of cortical covariance.皮质协方差的调整正则化
J Comput Neurosci. 2018 Oct;45(2):83-101. doi: 10.1007/s10827-018-0692-x. Epub 2018 Sep 6.
6
Separating Spike Count Correlation from Firing Rate Correlation.分离 Spike 计数相关性与放电率相关性。
Neural Comput. 2016 May;28(5):849-81. doi: 10.1162/NECO_a_00831. Epub 2016 Mar 4.
8
Establishing a Statistical Link between Network Oscillations and Neural Synchrony.建立网络振荡与神经同步之间的统计联系。
PLoS Comput Biol. 2015 Oct 14;11(10):e1004549. doi: 10.1371/journal.pcbi.1004549. eCollection 2015 Oct.

本文引用的文献

6
Neural synchrony in cortical networks: history, concept and current status.皮质网络中的神经同步:历史、概念和现状。
Front Integr Neurosci. 2009 Jul 30;3:17. doi: 10.3389/neuro.07.017.2009. eCollection 2009.
8
Traditional waveform based spike sorting yields biased rate code estimates.基于传统波形的尖峰分类会产生有偏差的速率编码估计。
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6921-6. doi: 10.1073/pnas.0901771106. Epub 2009 Apr 16.
10
Bayesian inference of functional connectivity and network structure from spikes.基于尖峰信号的功能连接性和网络结构的贝叶斯推断。
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):203-13. doi: 10.1109/TNSRE.2008.2010471. Epub 2008 Dec 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验