BioSimulation Center, ul. Filarecka 6/7, 30-110, Kraków, Poland.
Rehabilitation Clinical Trials Center, Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
Eur J Appl Physiol. 2020 Jul;120(7):1609-1619. doi: 10.1007/s00421-020-04388-4. Epub 2020 May 20.
The consequences of the assumption that the additional ATP usage, underlying the slow component of oxygen consumption ([Formula: see text]) and metabolite on-kinetics, starts when cytosolic inorganic phosphate (P) exceeds a certain "critical" P concentration, and muscle work terminates because of fatigue when P exceeds a certain, higher, "peak" P concentration are investigated.
A previously developed computer model of the myocyte bioenergetic system is used.
Simulated time courses of muscle [Formula: see text], cytosolic ADP, pH, PCr and P at various ATP usage activities agreed well with experimental data. Computer simulations resulted in a hyperbolic power-duration relationship, with critical power (CP) as an asymptote. CP was increased, and phase II [Formula: see text] on-kinetics was accelerated, by progressive increase in oxygen tension (hyperoxia).
P is a major factor responsible for the slow component of the [Formula: see text] and metabolite on-kinetics, fatigue-related muscle work termination and hyperbolic power-duration relationship. The successful generation of experimental system properties suggests that the additional ATP usage, underlying the slow component, indeed starts when cytosolic P exceeds a "critical" P concentration, and muscle work terminates when P exceeds a "peak" P concentration. The contribution of other factors, such as cytosolic acidification, or glycogen depletion and central fatigue should not be excluded. Thus, a detailed quantitative unifying mechanism underlying various phenomena related to skeletal muscle fatigue and exercise tolerance is offered that was absent in the literature. This mechanism is driven by reciprocal stimulation of P increase and additional ATP usage when "critical" P is exceeded.
当细胞溶胶无机磷 (P) 超过一定的“临界”P 浓度时,假设为氧消耗的慢成分 ([公式:见文本]) 和代谢物的动力学提供了额外的 ATP 利用,以及由于疲劳导致肌肉工作终止,当 P 超过一定的,更高的,“峰”P 浓度时,研究其后果。
使用先前开发的肌细胞生物能系统计算机模型。
模拟的肌肉[公式:见文本]、细胞溶胶 ADP、pH、PCr 和 P 的时间过程在各种 ATP 利用活动下与实验数据吻合良好。计算机模拟导致了双曲线的功率-时间关系,临界功率 (CP) 作为渐近线。随着氧张力(高氧)的逐步增加,CP 增加,并且相位 II [公式:见文本]的动力学加快。
P 是导致 [公式:见文本]的慢成分、与疲劳相关的肌肉工作终止以及双曲线功率-时间关系的主要因素。成功生成实验系统特性表明,确实当细胞溶胶 P 超过“临界”P 浓度时,为慢成分提供基础的额外 ATP 利用开始,并且当 P 超过“峰”P 浓度时,肌肉工作终止。其他因素(如细胞溶胶酸化、糖原耗竭和中枢疲劳)的贡献不应被排除。因此,提供了一个详细的定量统一机制,该机制为与骨骼肌疲劳和运动耐力相关的各种现象提供了基础,而这些在文献中是缺失的。该机制由“临界”P 超过时 P 增加和额外 ATP 利用的相互刺激驱动。