Suppr超能文献

基于核酸的芯片实验室诊断系统快速检测动员型多粘菌素耐药性。

Rapid Detection of Mobilized Colistin Resistance using a Nucleic Acid Based Lab-on-a-Chip Diagnostic System.

机构信息

NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom.

Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom.

出版信息

Sci Rep. 2020 May 21;10(1):8448. doi: 10.1038/s41598-020-64612-1.

Abstract

The increasing prevalence of antimicrobial resistance is a serious threat to global public health. One of the most concerning trends is the rapid spread of Carbapenemase-Producing Organisms (CPO), where colistin has become the last-resort antibiotic treatment. The emergence of colistin resistance, including the spread of mobilized colistin resistance (mcr) genes, raises the possibility of untreatable bacterial infections and motivates the development of improved diagnostics for the detection of colistin-resistant organisms. This work demonstrates a rapid response for detecting the most recently reported mcr gene, mcr-9, using a portable and affordable lab-on-a-chip (LoC) platform, offering a promising alternative to conventional laboratory-based instruments such as real-time PCR (qPCR). The platform combines semiconductor technology, for non-optical real-time DNA sensing, with a smartphone application for data acquisition, visualization and cloud connectivity. This technology is enabled by using loop-mediated isothermal amplification (LAMP) as the chemistry for targeted DNA detection, by virtue of its high sensitivity, specificity, yield, and manageable temperature requirements. Here, we have developed the first LAMP assay for mcr-9 - showing high sensitivity (down to 100 genomic copies/reaction) and high specificity (no cross-reactivity with other mcr variants). This assay is demonstrated through supporting a hospital investigation where we analyzed nucleic acids extracted from 128 carbapenemase-producing bacteria isolated from clinical and screening samples and found that 41 carried mcr-9 (validated using whole genome sequencing). Average positive detection times were 6.58 ± 0.42 min when performing the experiments on a conventional qPCR instrument (n = 41). For validating the translation of the LAMP assay onto a LoC platform, a subset of the samples were tested (n = 20), showing average detection times of 6.83 ± 0.92 min for positive isolates (n = 14). All experiments detected mcr-9 in under 10 min, and both platforms showed no statistically significant difference (p-value > 0.05). When sample preparation and throughput capabilities are integrated within this LoC platform, the adoption of this technology for the rapid detection and surveillance of antimicrobial resistance genes will decrease the turnaround time for DNA detection and resistotyping, improving diagnostic capabilities, patient outcomes, and the management of infectious diseases.

摘要

抗菌药物耐药性的日益流行是对全球公共卫生的严重威胁。其中最令人担忧的趋势之一是碳青霉烯酶产生菌(CPO)的迅速传播,而多粘菌素已成为最后的抗生素治疗方法。多粘菌素耐药性的出现,包括可移动多粘菌素耐药性(mcr)基因的传播,增加了细菌感染无法治疗的可能性,并促使人们开发出更好的诊断方法来检测多粘菌素耐药菌。本工作展示了一种使用便携式和负担得起的芯片实验室(LoC)平台快速检测最近报道的 mcr-9 基因的方法,该方法为传统的实验室仪器(如实时 PCR(qPCR))提供了一种有前途的替代方法。该平台结合了半导体技术,用于非光学实时 DNA 感测,以及智能手机应用程序用于数据采集、可视化和云连接。这项技术是通过使用环介导等温扩增(LAMP)作为靶向 DNA 检测的化学方法实现的,其具有高灵敏度、特异性、产量和易于控制的温度要求。在这里,我们开发了第一个用于 mcr-9 的 LAMP 检测方法 - 显示出高灵敏度(低至 100 个基因组拷贝/反应)和高特异性(与其他 mcr 变体无交叉反应)。该检测方法通过支持医院调查得到了验证,我们从临床和筛选样本中分离出 128 株碳青霉烯酶产生菌的核酸进行分析,发现 41 株携带 mcr-9(通过全基因组测序验证)。当在常规 qPCR 仪器上进行实验时,平均阳性检测时间为 6.58 ± 0.42 分钟(n = 41)。为了验证 LAMP 检测方法在 LoC 平台上的转化,对一部分样本进行了测试(n = 20),对于阳性分离株,平均检测时间为 6.83 ± 0.92 分钟(n = 14)。所有实验均在 10 分钟内检测到 mcr-9,两种平台均无统计学差异(p 值> 0.05)。当将样品制备和吞吐量能力集成到这个 LoC 平台中时,该技术的采用将用于快速检测和监测抗菌药物耐药基因,从而减少 DNA 检测和耐药性鉴定的周转时间,提高诊断能力、患者结局和传染病的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c794/7242339/41f25587e1c6/41598_2020_64612_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验