Long Yang, Ren Jie, Chen Hong
Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China.
Phys Rev Lett. 2020 May 8;124(18):185501. doi: 10.1103/PhysRevLett.124.185501.
Classification of topological phononics is challenging due to the lack of universal topological invariants and the randomness of structure patterns. Here, we show the unsupervised manifold learning for clustering topological phononics without any a priori knowledge, neither topological invariants nor supervised trainings, even when systems are imperfect or disordered. This is achieved by exploiting the real-space projection operator about finite phononic lattices to describe the correlation between oscillators. We exemplify the efficient unsupervised manifold clustering in typical phononic systems, including a one-dimensional Su-Schrieffer-Heeger-type phononic chain with random couplings, amorphous phononic topological insulators, higher-order phononic topological states, and a non-Hermitian phononic chain with random dissipations. The results would inspire more efforts on applications of unsupervised machine learning for topological phononic devices and beyond.
由于缺乏通用的拓扑不变量以及结构模式的随机性,拓扑声子学的分类颇具挑战。在此,我们展示了一种无监督流形学习方法,可在无需任何先验知识(既不需要拓扑不变量也不需要监督训练)的情况下对拓扑声子学进行聚类,即便系统存在缺陷或无序。这是通过利用有限声子晶格的实空间投影算符来描述振子之间的相关性得以实现的。我们在典型的声子系统中例证了这种高效的无监督流形聚类,包括具有随机耦合的一维Su-Schrieffer-Heeger型声子链、非晶态声子拓扑绝缘体、高阶声子拓扑态以及具有随机耗散的非厄米声子链。这些结果将激发人们在拓扑声子器件及其他领域应用无监督机器学习方面做出更多努力。