Hatanaka Daiki, Takeshita Hiroaki, Kataoka Motoki, Okamoto Hajime, Tsuruta Kenji, Yamaguchi Hiroshi
NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan.
Department of Electrical and Electronic Engineering, Okayama University, Okayama 700-8530, Japan.
Nano Lett. 2024 May 8;24(18):5570-5577. doi: 10.1021/acs.nanolett.4c00806. Epub 2024 Apr 18.
A coupled ring-waveguide structure is at the core of bosonic wave-based information processing systems, enabling advanced wave manipulations such as filtering, routing, and multiplexing. However, its miniaturization is challenging due to momentum conservation issues in rings with larger curvature that induce significant backscattering and radiation leakage and hampering stable operation. Here, we address it by taking an alternative approach of using topological technology in wavelength-scale and microwave ring-waveguide coupled systems built in nanoengineered phononic crystals. Our approach, which leverages pseudospin conservation in valley topological systems, eliminates phonon backscattering and achieves directional evanescent coupling. The resultant hypersonic waves in the tiny ring exhibit robust transport and resonant circulation. Furthermore, the ring-waveguide hybridization enables critical coupling, where valley-dependent ring-waveguide interference blocks the transmission. Our findings reveal the capability of topological phenomena for managing ultrahigh-frequency phonons in nano/microscale structures and pave the way for advanced phononic circuits in classical and quantum signal processing applications.
耦合环形波导结构是基于玻色子波的信息处理系统的核心,能够实现诸如滤波、路由和复用等先进的波操控。然而,由于曲率较大的环中的动量守恒问题,导致显著的背向散射和辐射泄漏,阻碍了稳定运行,其小型化具有挑战性。在此,我们通过在纳米工程声子晶体中构建的波长尺度和微波环形波导耦合系统中采用拓扑技术的替代方法来解决这一问题。我们的方法利用了谷拓扑系统中的赝自旋守恒,消除了声子背向散射并实现了定向倏逝耦合。在微小环中产生的高超音速波表现出稳健的传输和共振循环。此外,环形波导杂交实现了临界耦合,其中依赖于谷的环形波导干涉会阻断传输。我们的研究结果揭示了拓扑现象在纳米/微尺度结构中管理超高频声子的能力,并为经典和量子信号处理应用中的先进声子电路铺平了道路。