Suppr超能文献

关联规则挖掘算法在高速公路危险货物运输事故中的应用。

Application of association rules mining algorithm for hazardous materials transportation crashes on expressway.

机构信息

Department of Transportation Engineering, The University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul 02504, South Korea.

出版信息

Accid Anal Prev. 2020 Jul;142:105497. doi: 10.1016/j.aap.2020.105497. Epub 2020 May 19.

Abstract

Although crashes involving hazardous material (HAZMAT) vehicles on expressways do not occur frequently compared with other types of vehicles, the number of lives lost and social damage is very high when a HAZMAT vehicle-involved crash occurs. Therefore, it is essential to identify the leading causes of crashes involving HAZMAT vehicles and make specific countermeasures to improve the safety of expressways. This study aims to employ the association rules mining (ARM) approach to discover the contributory crash-risk factors of HAZMAT vehicle-involved crashes on expressways. A case study is conducted using crash data obtained from the Korea Expressway Corporation crash database from 2008 to 2017. ARM was conducted using the Apriori algorithm, and a total of 855 interesting rules were generated. With appropriate support, confidence, and lift values, we found hidden patterns in the HAZMAT crash characteristics. The results indicate that HAZMAT vehicle-involved crashes are highly associated with male drivers, single vehicle-involved crashes, clear weather conditions, daytime, and mainline segments. Also, we found that HAZMAT tank-lorry and cargo truck crashes, single vehicle-involved crashes, and crashes on mainline segments of expressways had independent and unique association rules. The finding from this study demonstrates that ARM is a plausible data mining technique that can be employed to draw relationships between HAZMAT vehicle-involved crashes and significant crash-risk factors, and has the potential of providing more easy-to-understand results and relevant insights for the safety improvement of expressways.

摘要

尽管高速公路上涉及危险材料 (HAZMAT) 车辆的事故与其他类型的车辆相比并不频繁,但当涉及 HAZMAT 车辆的事故发生时,生命损失和社会损失非常高。因此,识别导致 HAZMAT 车辆事故的主要原因并采取具体对策以提高高速公路的安全性至关重要。本研究旨在采用关联规则挖掘 (ARM) 方法来发现高速公路上涉及 HAZMAT 车辆事故的促成事故风险因素。使用从 2008 年到 2017 年从韩国高速公路公司事故数据库中获得的事故数据进行了案例研究。使用 Apriori 算法进行 ARM,共生成了 855 条有趣的规则。通过适当的支持、置信度和提升值,我们发现了 HAZMAT 事故特征中的隐藏模式。结果表明,HAZMAT 车辆事故与男性驾驶员、单车事故、晴朗天气条件、白天和主线路段高度相关。此外,我们发现 HAZMAT 罐式货车和货车事故、单车事故和高速公路主线路段的事故具有独立且独特的关联规则。本研究的结果表明,ARM 是一种可行的数据挖掘技术,可以用来分析 HAZMAT 车辆事故与重大事故风险因素之间的关系,并有可能为高速公路的安全改善提供更易于理解的结果和相关见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验