Suppr超能文献

利用多维关联规则挖掘制定针对性安全危害管理计划。

Development of targeted safety hazard management plans utilizing multidimensional association rule mining.

作者信息

Qiang Xingbang, Li Guoqing, Sari Yuksel Asli, Fan Chunchao, Hou Jie

机构信息

School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.

The Robert M. Buchan Department of Mining, Queen's University, Kingston K7L 3N6, Canada.

出版信息

Heliyon. 2024 Nov 23;10(23):e40676. doi: 10.1016/j.heliyon.2024.e40676. eCollection 2024 Dec 15.

Abstract

Investigating hidden hazards and implementing closed-loop management are essential strategies for accident prevention in the mining industry. This study tackles a key challenge in applying association rule mining to the development of hazard management plans for underground mines. The current approach mainly focuses on hazard description data, often underutilizing critical information such as hazard time and location. To address this, we integrate topic mining with association rule mining to uncover intrinsic association patterns among various attributes of mine safety hazards. Through a systematic analysis of standardized mining hazard attributes, five key analytical dimensions were identified: Hazard Type, Level, Time, Location, and Responsible Units. A topic mining model, utilizing the Biterm Topic Model, was constructed to reduce dimensionality and aggregate hazard description data. Evaluation indicators such as and were proposed, resulting in a multidimensional association rule mining model for mining safety hazards. In this research, 1387 valid rules were extracted based on hazard inspection data from an underground gold mine in China. The analysis revealed relatively strong associations between hazard location and hazard type, responsible unit, as well as hazard level, with association degrees of 1.934, 1.412, and 1.240, respectively. Additionally, 15 rules with a high degree of differentiation were identified to explore interesting correlations among different attributes. Based on this, corresponding control measures and improvement plans were developed for 19 locations. The results demonstrate that a multidimensional partition-based association rule mining approach for mining safety hazards can significantly enhance the specificity of safety training and improve the efficiency of safety hazard investigation.

摘要

调查潜在危险并实施闭环管理是采矿业事故预防的重要策略。本研究解决了将关联规则挖掘应用于地下矿山危险管理计划制定过程中的一个关键挑战。当前方法主要侧重于危险描述数据,往往未充分利用诸如危险时间和地点等关键信息。为解决这一问题,我们将主题挖掘与关联规则挖掘相结合,以揭示矿山安全危险各属性之间的内在关联模式。通过对标准化采矿危险属性的系统分析,确定了五个关键分析维度:危险类型、等级、时间、地点和责任单位。构建了一个利用双词主题模型的主题挖掘模型,以降低维度并汇总危险描述数据。提出了诸如[此处原文缺失具体指标名称]等评估指标,从而形成了一个用于采矿安全危险的多维关联规则挖掘模型。在本研究中,基于中国某地下金矿的危险检查数据提取了1387条有效规则。分析表明,危险地点与危险类型、责任单位以及危险等级之间存在相对较强的关联,关联度分别为1.934、1.412和1.240。此外,还识别出15条具有高度差异性的规则,以探索不同属性之间有趣的相关性。基于此,为19个地点制定了相应的控制措施和改进计划。结果表明,一种基于多维划分的采矿安全危险关联规则挖掘方法能够显著提高安全培训的针对性,提升安全危险调查的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e991/11666930/7ffcf1b46e04/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验