Suppr超能文献

基于公路安全信息系统数据的贝叶斯网络法危险品道路运输事故严重度分析

Severity Analysis of Hazardous Material Road Transportation Crashes with a Bayesian Network Using Highway Safety Information System Data.

机构信息

Road Safety Research Center, Research Institute of Highway Ministry of Transport, Beijing 100088, China.

Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.

出版信息

Int J Environ Res Public Health. 2022 Mar 28;19(7):4002. doi: 10.3390/ijerph19074002.

Abstract

Although crashes involving hazardous materials (HAZMAT) are rare events compared with other types of traffic crashes, they often cause tremendous loss of life and property, as well as severe hazards to the environment and public safety. Using five-year (2013-2017) crash data (N = 1610) from the Highway Safety Information System database, a two-step machine learning-based approach was proposed to investigate and quantify the statistical relationship between three HAZMAT crash severity outcomes (fatal and severe injury, injury, and no injury) and contributing factors, including the driver, road, vehicle, crash, and environmental characteristics. Random forest ranked the importance of risk factors, and then Bayesian networks were developed to provide probabilistic inference. The results show that fatal and severe HAZMAT crashes are closely associated with younger drivers (age less than 25), driver fatigue, violation, distraction, special roadway locations (such as intersections, ramps, and bridges), higher speed limits (over 66 mph), midnight and early morning (12:00-5:59 a.m.), head-on crashes, more than four vehicles, fire/explosion/spill, poor lighting conditions, and adverse weather conditions. The overall prediction accuracy of 85.8% suggests the effectiveness of the proposed method. This study extends machine learning applications in a HAZMAT crash analysis, which would help develop targeted countermeasures and strategies to improve HAZMAT road transportation safety.

摘要

虽然涉及危险材料 (HAZMAT) 的事故与其他类型的交通事故相比是罕见事件,但它们通常会造成巨大的生命和财产损失,以及对环境和公共安全的严重危害。本研究使用来自公路安全信息系统数据库的五年(2013-2017 年)事故数据(N=1610),采用两步基于机器学习的方法来研究和量化 HAZMAT 事故严重程度结果(致命和重伤、受伤和无伤害)与驾驶员、道路、车辆、事故和环境特征等因素之间的统计关系。随机森林对危险因素的重要性进行了排序,然后开发了贝叶斯网络以提供概率推断。结果表明,致命和重伤的 HAZMAT 事故与年轻驾驶员(年龄小于 25 岁)、驾驶员疲劳、违规、分心、特殊道路位置(如交叉口、匝道和桥梁)、更高的限速(超过 66 英里/小时)、午夜和清晨(12:00-5:59 a.m.)、对向碰撞、超过四辆车、火灾/爆炸/溢出、照明条件差和恶劣天气条件密切相关。85.8%的总体预测准确率表明了该方法的有效性。本研究扩展了机器学习在 HAZMAT 事故分析中的应用,这将有助于制定有针对性的措施和策略,以提高 HAZMAT 道路运输安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd4/8998538/a2dea90fcc9c/ijerph-19-04002-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验