Suppr超能文献

医护人员对冠状病毒风险的经历与认知:一项系统评价方案

Experiences and perceptions risk of health-care workers from coronavirus: A protocol for systematic review.

作者信息

Chen Peng, Lei Jiexin, Chen Fuchao, Zhou Benhong

机构信息

Department of Pharmacy.

Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan.

出版信息

Medicine (Baltimore). 2020 May;99(20):e20308. doi: 10.1097/MD.0000000000020308.

Abstract

BACKGROUND

Healthcare workers (HCWs) were at the frontline during the battle against coronavirus. Understanding and managing their fears and anxieties may hold lessons for handling future outbreaks. However, the experiences and perceptions risk of HCWs from coronavirus still remains to be controversial. Thus, the objective of this review is to identify, appraise, and synthesize available evidence related to the experiences and perceptions of risk of HCWs from coronavirus.

METHODS

The studies were gathered from PubMed, Cochrane Library, EMBASE, CBMdisc, CNKI, WKSP, CSJFT, Google Scholar, and PsycINFO, along with several sources of gray literature. The retrieval of full-text studies, data extraction, and quality assessment of the included studies will be independently conducted by 2 reviewers. The meta-aggregative will be used for findings pooling and a summary of ConQual findings tables will be presented in future.

RESULTS

This study will be submitted to a peer-reviewed journal for publication.

CONCLUSION

The literature will provide a high-quality analysis of the current evidence to assess the experiences and perceptions risk of health-care workers from coronavirus.

REGISTRATION INFORMATION

CRD42020170388.

摘要

背景

医护人员在抗击新冠病毒的战斗中处于前线。了解并应对他们的恐惧和焦虑可能为应对未来疫情提供经验教训。然而,医护人员对新冠病毒的经历和风险认知仍存在争议。因此,本综述的目的是识别、评估和综合与医护人员对新冠病毒的经历和风险认知相关的现有证据。

方法

研究从PubMed、Cochrane图书馆、EMBASE、CBMdisc、中国知网、万方数据、维普资讯、谷歌学术和PsycINFO以及几个灰色文献来源收集。纳入研究的全文检索、数据提取和质量评估将由两名评审员独立进行。将使用元聚合进行结果汇总,未来将呈现ConQual结果表的总结。

结果

本研究将提交给同行评审期刊发表。

结论

该文献将对当前证据进行高质量分析,以评估医护人员对新冠病毒的经历和风险认知。

注册信息

CRD42020170388。

相似文献

引用本文的文献

本文引用的文献

9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验