Suppr超能文献

用于通过流式细胞术评估可测量残留病的聚类和核密度估计

Clustering and Kernel Density Estimation for Assessment of Measurable Residual Disease by Flow Cytometry.

作者信息

Jacqmin Hugues, Chatelain Bernard, Louveaux Quentin, Jacqmin Philippe, Dogné Jean-Michel, Graux Carlos, Mullier François

机构信息

Hematology Laboratory, NAmur Research Institute for LIfe Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), CHU UCL Namur, Université catholique de Louvain, 5530 Yvoir, Belgium.

Montefiore Institute, University of Liege, 4000 Liège, Belgium.

出版信息

Diagnostics (Basel). 2020 May 18;10(5):317. doi: 10.3390/diagnostics10050317.

Abstract

Standardization, data mining techniques, and comparison to normality are changing the landscape of multiparameter flow cytometry in clinical hematology. On the basis of these principles, a strategy was developed for measurable residual disease (MRD) assessment. Herein, suspicious cell clusters are first identified at diagnosis using a clustering algorithm. Subsequently, automated multidimensional spaces, named "Clouds", are created around these clusters on the basis of density calculations. This step identifies the immunophenotypic pattern of the suspicious cell clusters. Thereafter, using reference samples, the "Abnormality Ratio" (AR) of each Cloud is calculated, and major malignant Clouds are retained, known as "Leukemic Clouds" (L-Clouds). In follow-up samples, MRD is identified when more cells fall into a patient's L-Cloud compared to reference samples (AR concept). This workflow was applied on simulated data and real-life leukemia flow cytometry data. On simulated data, strong patient-dependent positive correlation ( = 1) was observed between the AR and spiked-in leukemia cells. On real patient data, AR kinetics was in line with the clinical evolution for five out of six patients. In conclusion, we present a convenient flow cytometry data analysis approach for the follow-up of hematological malignancies. Further evaluation and validation on more patient samples and different flow cytometry panels is required before implementation in clinical practice.

摘要

标准化、数据挖掘技术以及与正常情况的比较正在改变临床血液学中多参数流式细胞术的格局。基于这些原则,开发了一种用于可测量残留疾病(MRD)评估的策略。在此,首先在诊断时使用聚类算法识别可疑细胞簇。随后,基于密度计算在这些簇周围创建名为“云”的自动多维空间。这一步确定了可疑细胞簇的免疫表型模式。此后,使用参考样本计算每个“云”的“异常率”(AR),并保留主要的恶性“云”,即“白血病云”(L-云)。在后续样本中,当与参考样本相比更多细胞落入患者的L-云时(AR概念),则识别出MRD。此工作流程应用于模拟数据和实际白血病流式细胞术数据。在模拟数据上,观察到AR与掺入的白血病细胞之间存在强烈的患者依赖性正相关(=1)。在真实患者数据上,六名患者中有五名的AR动力学与临床病程一致。总之,我们提出了一种用于血液系统恶性肿瘤随访的便捷流式细胞术数据分析方法。在临床实践中实施之前,需要对更多患者样本和不同流式细胞术检测板进行进一步评估和验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验