Montero Nicolle, Alhajj Maria J, Sierra Mariana, Oñate-Garzon Jose, Yarce Cristhian J, Salamanca Constain H
Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia.
Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, calle 5 No. 62-00, Cali 760035, Colombia.
Polymers (Basel). 2020 May 20;12(5):1168. doi: 10.3390/polym12051168.
This study was focused on synthesizing, characterizing and evaluating the biological potential of Polyelectrolyte Complex Nanoparticles (PECNs) loaded with the antibiotic ampicillin. For this, the PECNs were produced initially by polyelectrolytic complexation (bottom-up method) and subsequently subjected to ultra-high pressure homogenization-UHPH (top-down method). The synthetic polymeric materials corresponding to the sodium salt of poly(maleic acid--octadecene) (PAM-18Na) and the chloride salt of Eudragit E-100 (EuCl) were used, where the order of polyelectrolyte complexation, the polyelectrolyte ratio and the UHPH conditions on the PECNs features were evaluated. Likewise, PECNs were physicochemically characterized through particle size, polydispersity index, zeta potential, pH and encapsulation efficiency, whereas the antimicrobial effect was evaluated by means of the broth microdilution method employing ampicillin sensitive and resistant strains. The results showed that the classical method of polyelectrolyte complexation (bottom-up) led to obtain polymeric complexes with large particle size and high polydispersity, where the 1:1 ratio between the titrant and receptor polyelectrolyte was the most critical condition. In contrast, the UHPH technique (top-down method) proved high performance to produce uniform polymeric complexes on the nanometric scale (particle size < 200 nm and PDI < 0.3). Finally, it was found there was a moderate increase in antimicrobial activity when ampicillin was loaded into the PECNs.
本研究聚焦于合成、表征及评估负载抗生素氨苄西林的聚电解质复合纳米颗粒(PECNs)的生物学潜力。为此,首先通过聚电解质络合(自下而上法)制备PECNs,随后对其进行超高压均质处理(自上而下法)。使用了与聚(马来酸 - 十八烯)钠盐(PAM - 18Na)和Eudragit E - 100氯盐(EuCl)相对应的合成聚合物材料,评估了聚电解质络合顺序、聚电解质比例以及超高压均质条件对PECNs特性的影响。同样,通过粒径、多分散指数、zeta电位、pH值和包封率对PECNs进行物理化学表征,而抗菌效果则通过使用氨苄西林敏感和耐药菌株的肉汤微量稀释法进行评估。结果表明,传统的聚电解质络合方法(自下而上)导致获得粒径大且多分散性高的聚合物复合物,其中滴定剂与受体聚电解质之间1:1的比例是最关键的条件。相比之下,超高压均质技术(自上而下法)在制备纳米级均匀聚合物复合物方面表现出高性能(粒径<200 nm且PDI<0.3)。最后,发现当氨苄西林负载到PECNs中时,抗菌活性有适度增加。