School of Chemistry , Damghan University , Damghan 36716-41167 , Iran.
Center for Advanced Biomaterials for Health Care , Istituto Italiano di Tecnologia , Naples 80125 , Italy.
ACS Appl Mater Interfaces. 2020 Jan 22;12(3):3279-3300. doi: 10.1021/acsami.9b19435. Epub 2020 Jan 7.
Among the different synthetic polymers developed for biomedical applications, poly(lactic--glycolic acid) (PLGA) has attracted considerable attention because of its excellent biocompatibility and biodegradability. Nanocomposites based on PLGA and metal-based nanostructures (MNSs) have been employed extensively as an efficient strategy to improve the structural and functional properties of PLGA polymer. The MNSs have been used to impart new properties to PLGA, such as antimicrobial properties and labeling. In the present review, the different strategies available for the fabrication of MNS/PLGA nanocomposites and their applications in the biomedical field will be discussed, beginning with a description of the preparation routes, antimicrobial activity, and cytotoxicity concerns of MNS/PLGA nanocomposites. The biomedical applications of these nanocomposites, such as carriers and scaffolds in tissue regeneration and other therapies are subsequently reviewed. In addition, the potential advantages of using MNS/PLGA nanocomposites in treatment illnesses are analyzed based on and studies, to support the potential of these nanocomposites in future research in the biomedical field.
在为生物医学应用开发的各种合成聚合物中,聚(乳酸-乙醇酸)(PLGA)因其出色的生物相容性和可降解性而引起了相当大的关注。基于 PLGA 和基于金属的纳米结构(MNS)的纳米复合材料已被广泛用作一种有效策略,以提高 PLGA 聚合物的结构和功能特性。MNS 已被用于赋予 PLGA 新的特性,例如抗菌性能和标记。在本综述中,将讨论用于制备 MNS/PLGA 纳米复合材料的不同策略及其在生物医学领域的应用,首先描述 MNS/PLGA 纳米复合材料的制备途径、抗菌活性和细胞毒性问题。随后综述了这些纳米复合材料在组织再生和其他治疗中的载体和支架等生物医学应用。此外,基于[13,14]研究分析了在治疗疾病中使用 MNS/PLGA 纳米复合材料的潜在优势,以支持这些纳米复合材料在生物医学领域未来研究中的潜力。