Peinado Cristina, Liuzzi Dalia, Ladera-Gallardo Rosa María, Retuerto María, Ojeda Manuel, Peña Miguel A, Rojas Sergio
Grupo de Energía y Química Sostenibles (EQS). Instituto de Catálisis y Petroleoquímica CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
Sci Rep. 2020 May 22;10(1):8551. doi: 10.1038/s41598-020-65296-3.
Dimethyl ether (DME) is an advanced second-generation biofuel produced via methanol dehydration over acid catalysts such as γ-AlO, at temperatures above 240 °C and pressures above 10 bar. Heteropolyacids such as tungstosilicic acid (HSiW) are Brønsted acid catalysts with higher DME production rates than γ-AlO, especially at low temperatures (140-180 °C). In this work, we show that the performance of supported HSiW for the production of DME is strongly affected by the nature of the support. TiO and SiO supported HSiW display the highest DME production rates of ca. 50 mmol/h/g. Characterization of acid sites via H-NMR, NH-isotherms and NH-adsrobed DRIFT reveal that HSiW/X have Brønsted acid sites, HSiW/TiO showing more and stronger sites, being the most active catalyst. Methanol production increases with T until 200 °C where a rapid decay in methanol conversion is observed. This effect is not irreversible, and methanol conversion increases to ca. 90% by increasing reaction pressure to 10 bar, with DME being the only product detected at all reaction conditions studied in this work. The loss of catalytic activity with the increasing temperature and its increasing with reaction pressure accounts to the degree of contribution of the pseudo-liquid catalysis under the reaction conditions studied.
二甲醚(DME)是一种先进的第二代生物燃料,通过甲醇在酸性催化剂(如γ -AlO)上于240°C以上的温度和10巴以上的压力下脱水制得。杂多酸(如硅钨酸(HSiW))是布朗斯特酸催化剂,其DME产率高于γ -AlO,尤其是在低温(140 - 180°C)下。在这项工作中,我们表明负载型HSiW用于生产DME的性能受到载体性质的强烈影响。TiO和SiO负载的HSiW显示出约50 mmol/h/g的最高DME产率。通过H -NMR、NH等温线和NH吸附DRIFT对酸性位点进行表征表明,HSiW/X具有布朗斯特酸性位点,HSiW/TiO显示出更多且更强的位点,是最具活性的催化剂。甲醇产率随温度升高至200°C,此时观察到甲醇转化率迅速下降。这种影响不是不可逆的,通过将反应压力提高到10巴,甲醇转化率增加到约90%,在本工作研究的所有反应条件下,DME是唯一检测到的产物。在研究的反应条件下,催化活性随温度升高而降低以及随反应压力升高而增加归因于拟液相催化的贡献程度。