Gaspard-Monge Computer Science Laboratory, A3SI, ESIEE Paris, Université Paris-Est, Paris, France.
Gaspard-Monge Computer Science Laboratory, A3SI, ESIEE Paris, Université Paris-Est, Paris, France.
Comput Med Imaging Graph. 2019 Oct;77:101643. doi: 10.1016/j.compmedimag.2019.101643. Epub 2019 Aug 14.
Visual impairment affects a significant part of the population worldwide. Glaucoma is one of these main causes, a chronic eye disease leading to progressive vision loss. Early glaucoma screening is an important task, allowing a slowing down of the pathology spreading and avoidance of irreversible vision damages. When manual assessment by experts suffers from disadvantages, exploiting the relevant Cup-to-Disc Ratio (CDR) feature as a structural indicator to assess the damage to the optic nerve head (ONH) is an efficient way for early glaucoma screening and diagnosis.
In this paper, we propose a new fully automated methodology for glaucoma screening and diagnosis from retinal fundus images. In order to allow eye examination in remote locations with limited access to clinical facilities, we focus in this work on the development of a computationally-efficient algorithm for further implementation on mobile devices. First, the method provides a robust optic disc (OD) detection method, combining a brightness criterion and a template matching technique, to effectively detect the optic disc (OD) even in the presence of bright lesions associated to pathological cases. Second, an efficient optic cup (OC) and optic disc (OD) segmentation is performed, using a texture-based and model-based approach. Finally, Cup-to-Disc Ratio (CDR) computation leads to glaucoma screening with a classification between healthy and glaucomatous patients.
The proposed approach for glaucoma screening and diagnosis have been tested on the publicly available DRISHTI-GS1 dataset. Fifty retinal images are provided and labeled healthy or glaucomatous by trained specialists. The method achieves 98% of accuracy on final glaucoma screening and diagnosis, and excellent performance rates on evaluation metrics, outperforming the state-of-the-art CDR feature-based approaches.
We proposed a fully automated method for glaucoma screening and diagnosis from retinal images. Excellent performance was obtained on final screening, classifying healthy and glaucomatous subjects. As it effectively detects the presence of glaucoma, in a low-computational manner, the approach can be part of a mobile help-diagnosis system, to improve the final diagnosis by the specialist and develop widespread visual health programs.
视力障碍影响着全球相当一部分人口。青光眼就是其中的主要病因之一,是一种导致视力逐渐丧失的慢性眼病。早期青光眼筛查是一项重要任务,可以减缓病变的发展,避免不可逆转的视力损害。当专家的手动评估存在缺陷时,利用相关的杯盘比(CDR)特征作为评估视神经头(ONH)损伤的结构指标,是早期青光眼筛查和诊断的有效方法。
本文提出了一种从眼底图像中进行青光眼筛查和诊断的全新全自动方法。为了允许在远程位置进行眼部检查,这些位置的临床设施有限,我们专注于开发一种计算效率高的算法,以便进一步在移动设备上实现。首先,该方法提供了一种稳健的视盘(OD)检测方法,结合亮度标准和模板匹配技术,即使在存在与病理病例相关的明亮病变的情况下,也能有效地检测视盘(OD)。其次,采用基于纹理和基于模型的方法对视神经杯(OC)和视盘(OD)进行高效分割。最后,通过计算杯盘比(CDR)进行青光眼筛查,将健康和青光眼患者进行分类。
所提出的青光眼筛查和诊断方法已在公开的 DRISHTI-GS1 数据集上进行了测试。提供了 50 张视网膜图像,并由经过培训的专家标记为健康或青光眼。该方法在最终的青光眼筛查和诊断中达到了 98%的准确率,在评估指标上也取得了出色的性能,优于基于 CDR 特征的现有方法。
我们提出了一种从视网膜图像中进行青光眼筛查和诊断的全自动方法。在最终的筛查中,该方法能够出色地对健康和青光眼患者进行分类。由于它以低计算复杂度有效地检测出青光眼的存在,因此该方法可以作为移动辅助诊断系统的一部分,通过专家的最终诊断来提高诊断水平,并开发广泛的视觉健康计划。