Suppr超能文献

ECSD-Net:一种基于无监督域自适应的联合视盘和杯分割及青光眼分类网络。

ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation.

机构信息

School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.

出版信息

Comput Methods Programs Biomed. 2022 Jan;213:106530. doi: 10.1016/j.cmpb.2021.106530. Epub 2021 Nov 14.

Abstract

BACKGROUND AND OBJECTIVES

Glaucoma can cause irreversible vision loss and even blindness, and early diagnosis can help prevent vision loss. Analyzing the optic disc and optic cup helps diagnose glaucoma, which motivates many computer-aided diagnosis methods based on deep learning networks. However, the performance of the trained model on new datasets is seriously hindered due to the distribution gap between different datasets. Therefore, we aim to develop an unsupervised learning method to solve this problem and improve the prediction performance of the model on new datasets.

METHODS

In this paper, we propose a novel unsupervised model based on adversarial learning to perform the optic disc and cup segmentation and glaucoma screening tasks in a more generalized and efficient manner. We adopt an efficient segmentation and classification network and employ unsupervised domain adaptation technology on the output space of the segmentation network to solve the domain shift problem. We conduct glaucoma screening task by combining classification and segmentation networks to obtain more stable and efficient glaucoma screening prediction.

RESULTS

We verify the effectiveness and efficiency of our proposed method on three public datasets, the REFUGE, DRISHTI-GS and RIM-ONE-r3 datasets. The experimental results demonstrate that the proposed method can effectively alleviate the deterioration of segmentation performance caused by domain shift and improve the accuracy of glaucoma screening. Furthermore, the proposed method outperforms state-of-the-art unsupervised optic disc and cup segmentation domain adaptation methods.

CONCLUSIONS

The proposed method can assist clinicians in screening and diagnosis of glaucoma and is suitable for real-world applications.

摘要

背景与目的

青光眼可导致不可逆的视力丧失甚至失明,早期诊断有助于防止视力丧失。分析视盘和视杯有助于诊断青光眼,这促使了许多基于深度学习网络的计算机辅助诊断方法的发展。然而,由于不同数据集之间的分布差距,训练后的模型在新数据集上的性能严重受到阻碍。因此,我们旨在开发一种无监督学习方法来解决这个问题,并提高模型在新数据集上的预测性能。

方法

在本文中,我们提出了一种基于对抗学习的新的无监督模型,以更全面和高效的方式执行视盘和视杯分割和青光眼筛查任务。我们采用了高效的分割和分类网络,并在分割网络的输出空间中采用无监督域自适应技术来解决域迁移问题。我们通过结合分类和分割网络来进行青光眼筛查任务,以获得更稳定和高效的青光眼筛查预测。

结果

我们在三个公共数据集 REFUGE、DRISHTI-GS 和 RIM-ONE-r3 上验证了我们提出方法的有效性和效率。实验结果表明,该方法可以有效缓解由于域迁移导致的分割性能下降,并提高青光眼筛查的准确性。此外,该方法优于最新的无监督视盘和视杯分割域自适应方法。

结论

该方法可以辅助临床医生进行青光眼的筛查和诊断,适用于实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验