Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany.
Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan.
Clin Pharmacokinet. 2020 Nov;59(11):1419-1431. doi: 10.1007/s40262-020-00896-w.
Metformin is a widely prescribed antidiabetic BCS Class III drug (low permeability) that depends on active transport for its absorption and disposition. It is recommended by the US Food and Drug Administration as a clinical substrate of organic cation transporter 2/multidrug and toxin extrusion protein for drug-drug interaction studies. Cimetidine is a potent organic cation transporter 2/multidrug and toxin extrusion protein inhibitor.
The objective of this study was to provide mechanistic whole-body physiologically based pharmacokinetic models of metformin and cimetidine, built and evaluated to describe the metformin-SLC22A2 808G>T drug-gene interaction, the cimetidine-metformin drug-drug interaction, and the impact of renal impairment on metformin exposure.
Physiologically based pharmacokinetic models were developed in PK-Sim (version 8.0). Thirty-nine clinical studies (dosing range 0.001-2550 mg), providing metformin plasma and urine data, positron emission tomography measurements of tissue concentrations, studies in organic cation transporter 2 polymorphic volunteers, drug-drug interaction studies with cimetidine, and data from patients in different stages of chronic kidney disease, were used to develop the metformin model. Twenty-seven clinical studies (dosing range 100-800 mg), reporting cimetidine plasma and urine concentrations, were used for the cimetidine model development.
The established physiologically based pharmacokinetic models adequately describe the available clinical data, including the investigated drug-gene interaction, drug-drug interaction, and drug-drug-gene interaction studies, as well as the metformin exposure during renal impairment. All modeled drug-drug interaction area under the curve and maximum concentration ratios are within 1.5-fold of the observed ratios. The clinical data of renally impaired patients shows the expected increase in metformin exposure with declining kidney function, but also indicates counter-regulatory mechanisms in severe renal disease; these mechanisms were implemented into the model based on findings in preclinical species.
Whole-body physiologically based pharmacokinetic models of metformin and cimetidine were built and qualified for the prediction of metformin pharmacokinetics during drug-gene interaction, drug-drug interaction, and different stages of renal disease. The model files will be freely available in the Open Systems Pharmacology model repository. Current guidelines for metformin treatment of renally impaired patients should be reviewed to avoid overdosing in CKD3 and to allow metformin therapy of CKD4 patients.
二甲双胍是一种广泛应用的治疗糖尿病的 BCS Ⅲ类药物(低通透性),其吸收和分布依赖于主动转运。美国食品和药物管理局推荐将其作为有机阳离子转运体 2/多药和毒素外排蛋白的临床底物,用于药物相互作用的研究。西咪替丁是一种强效的有机阳离子转运体 2/多药和毒素外排蛋白抑制剂。
本研究旨在提供二甲双胍和西咪替丁的机制性全身体生理药代动力学模型,建立并评估这些模型以描述二甲双胍-SLC22A2 808G>T 药物-基因相互作用、西咪替丁-二甲双胍药物-药物相互作用以及肾功能损害对二甲双胍暴露的影响。
生理药代动力学模型在 PK-Sim(版本 8.0)中构建。共有 39 项临床研究(给药范围 0.001-2550mg)提供了二甲双胍的血浆和尿液数据、组织浓度的正电子发射断层扫描测量、有机阳离子转运体 2 多态性志愿者的研究、与西咪替丁的药物-药物相互作用研究以及不同慢性肾脏病阶段患者的数据,用于开发二甲双胍模型。27 项临床研究(给药范围 100-800mg)报告了西咪替丁的血浆和尿液浓度,用于西咪替丁模型的开发。
所建立的生理药代动力学模型能够充分描述现有的临床数据,包括所研究的药物-基因相互作用、药物-药物相互作用以及药物-药物-基因相互作用研究,以及肾功能损害期间的二甲双胍暴露情况。所有建模的药物-药物相互作用的曲线下面积和最大浓度比值均在观察比值的 1.5 倍以内。肾功能损害患者的临床数据显示,随着肾功能下降,二甲双胍的暴露量预计会增加,但也表明在严重的肾脏疾病中存在代偿机制;这些机制是根据临床前物种的研究结果在模型中实现的。
二甲双胍和西咪替丁的全身体生理药代动力学模型已建立并合格,可用于预测药物-基因相互作用、药物-药物相互作用以及不同阶段肾功能疾病期间的二甲双胍药代动力学。模型文件将在开放系统药理学模型库中免费提供。目前应重新审查肾功能损害患者的二甲双胍治疗指南,以避免 CKD3 患者用药过量,并允许 CKD4 患者使用二甲双胍治疗。