Rüdesheim Simeon, Loer Helena Leonie Hanae, Feick Denise, Marok Fatima Zahra, Fuhr Laura Maria, Selzer Dominik, Teutonico Donato, Schneider Annika R P, Solodenko Juri, Frechen Sebastian, van der Lee Maaike, Moes Dirk Jan A R, Swen Jesse J, Schwab Matthias, Lehr Thorsten
Clinical Pharmacy, Saarland University, Saarbrücken, Germany.
Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.
Clin Pharmacol Ther. 2025 Jun;117(6):1718-1731. doi: 10.1002/cpt.3604. Epub 2025 Feb 14.
Conducting clinical studies on drug-drug-gene interactions (DDGIs) and extrapolating the findings into clinical dose recommendations is challenging due to the high complexity of these interactions. Here, physiologically-based pharmacokinetic (PBPK) modeling networks present a new avenue for exploring such complex scenarios, potentially informing clinical guidelines and handling patient-specific DDGIs at the bedside. Moreover, they provide an established framework for drug-drug interaction (DDI) submissions to regulatory agencies. The cytochrome P450 (CYP) 2D6 enzyme is particularly prone to DDGIs due to the high prevalence of genetic variation and common use of CYP2D6 inhibiting drugs. In this study, we present a comprehensive PBPK network covering CYP2D6 drug-gene interactions (DGIs), DDIs, and DDGIs. The network covers sensitive and moderate sensitive substrates, and strong and weak inhibitors of CYP2D6 according to the United States Food and Drug Administration (FDA) guidance. For the analyzed CYP2D6 substrates and inhibitors, DD(G)Is mediated by CYP3A4 and P-glycoprotein were included. Overall, the network comprises 23 compounds and was developed based on 30 DGI, 45 DDI, and seven DDGI studies, covering 32 unique drug combinations. Good predictive performance was demonstrated for all interaction types, as reflected in mean geometric mean fold errors of 1.40, 1.38, and 1.56 for the DD(G)I area under the curve ratios as well as 1.29, 1.43, and 1.60 for DD(G)I maximum plasma concentration ratios. Finally, the presented network was utilized to calculate dose adaptations for CYP2D6 substrates atomoxetine (sensitive) and metoprolol (moderate sensitive) for clinically untested DDGI scenarios, showcasing a potential clinical application of DDGI model networks in the field of model-informed precision dosing.
由于药物-药物-基因相互作用(DDGIs)的高度复杂性,开展关于此类相互作用的临床研究并将研究结果外推至临床剂量推荐具有挑战性。在此,基于生理的药代动力学(PBPK)建模网络为探索此类复杂情况提供了一条新途径,有可能为临床指南提供信息并在床边处理患者特异性DDGIs。此外,它们为向监管机构提交药物-药物相互作用(DDI)提供了一个既定框架。细胞色素P450(CYP)2D6酶由于基因变异的高发生率以及CYP2D6抑制药物的广泛使用,特别容易发生DDGIs。在本研究中,我们展示了一个涵盖CYP2D6药物-基因相互作用(DGIs)、DDIs和DDGIs的综合PBPK网络。根据美国食品药品监督管理局(FDA)的指导原则,该网络涵盖了敏感和中度敏感底物以及CYP2D6的强抑制剂和弱抑制剂。对于所分析的CYP2D6底物和抑制剂,纳入了由CYP3A4和P-糖蛋白介导的DD(G)Is。总体而言,该网络包含23种化合物,是基于30项DGI、45项DDI和7项DDGI研究开发的,涵盖32种独特的药物组合。对于所有相互作用类型均表现出良好的预测性能,DD(G)I曲线下面积比值的平均几何平均倍数误差为1.40、1.38和1.56,DD(G)I最大血浆浓度比值的平均几何平均倍数误差为1.29、1.43和1.60。最后,利用所展示的网络计算了临床未测试的DDGI情况下CYP2D6底物托莫西汀(敏感)和美托洛尔(中度敏感)的剂量调整,展示了DDGI模型网络在模型指导的精准给药领域的潜在临床应用。