Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA.
Chemistry. 2020 Oct 1;26(55):12494-12509. doi: 10.1002/chem.202001338. Epub 2020 Aug 26.
Hydrogen is a clean and sustainable form of fuel that can minimize our heavy dependence on fossil fuels as the primary energy source. The need of finding greener ways to generate H gas has ignited interest in the research community to synthesize catalysts that can produce H by the reduction of H . The natural H producing enzymes hydrogenases have served as an inspiration to produce catalytic metal centers akin to these native enzymes. In this article we describe recent advances in the design of a unique class of artificial hydrogen evolving catalysts that combine the features of the active site metal(s) surrounded by a polypeptide component. The examples of these biosynthetic catalysts discussed here include i) assemblies of synthetic cofactors with native proteins; ii) peptide-appended synthetic complexes; iii) substitution of native cofactors with non-native cofactors; iv) metal substitution from rubredoxin; and v) a reengineered Cu storage protein into a Ni binding protein. Aspects of key design considerations in the construction of these artificial biocatalysts and insights gained into their chemical reactivity are discussed.
氢气是一种清洁且可持续的燃料形式,可以最大限度地减少我们对化石燃料作为主要能源的严重依赖。寻找更环保的方法来产生氢气激发了研究界的兴趣,促使人们合成可以通过还原氢气来产生氢气的催化剂。天然产生氢气的酶氢化酶为生产类似于这些天然酶的催化金属中心提供了灵感。在本文中,我们描述了设计一类独特的人工产氢催化剂的最新进展,这些催化剂结合了被多肽组分包围的活性位点金属的特征。这里讨论的这些生物合成催化剂的例子包括:i)天然蛋白质与合成辅因子的组装;ii)肽附加的合成配合物;iii)用非天然辅因子替代天然辅因子;iv)从 rubredoxin 中的金属取代;以及 v)将重新设计的 Cu 储存蛋白转化为 Ni 结合蛋白。讨论了在构建这些人工生物催化剂时的关键设计考虑因素以及对其化学反应性的深入了解。