Suppr超能文献

从头设计的人工金属肽氢化酶:对光化学过程和质子化半胱氨酸作用的深入了解。

A De Novo-Designed Artificial Metallopeptide Hydrogenase: Insights into Photochemical Processes and the Role of Protonated Cys.

机构信息

Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.

出版信息

ChemSusChem. 2021 May 20;14(10):2237-2246. doi: 10.1002/cssc.202100122. Epub 2021 Apr 28.

Abstract

Hydrogenase enzymes produce H gas, which can be a potential source of alternative energy. Inspired by the [NiFe] hydrogenases, we report the construction of a de novo-designed artificial hydrogenase (ArH). The ArH is a dimeric coiled coil where two cysteine (Cys) residues are introduced at tandem a/d positions of a heptad to create a tetrathiolato Ni binding site. Spectroscopic studies show that Ni binding significantly stabilizes the peptide producing electronic transitions characteristic of Ni-thiolate proteins. The ArH produces H photocatalytically, demonstrating a bell-shaped pH-dependence on activity. Fluorescence lifetimes and transient absorption spectroscopic studies are undertaken to elucidate the nature of pH-dependence, and to monitor the reaction kinetics of the photochemical processes. pH titrations are employed to determine the role of protonated Cys on reactivity. Through combining these results, a fine balance is found between solution acidity and the electron transfer steps. This balance is critical to maximize the production of Ni -peptide and protonation of the Ni -H intermediate (Ni-R) by a Cys (pK ≈6.4) to produce H .

摘要

氢化酶酶产生 H 气体,这可能是替代能源的潜在来源。受 [NiFe] 氢化酶的启发,我们报告了一种全新设计的人工氢化酶(ArH)的构建。ArH 是一个二聚体螺旋线圈,其中两个半胱氨酸(Cys)残基被引入串联的 a/d 位置的七肽中,以创建四硫代镍结合位点。光谱研究表明,镍结合显著稳定了产生与镍-硫醇蛋白特征电子跃迁的肽。ArH 光催化产生 H,表现出对活性的 pH 值依赖性呈钟形。荧光寿命和瞬态吸收光谱研究用于阐明 pH 值依赖性的性质,并监测光化学过程的反应动力学。pH 滴定用于确定质子化 Cys 在反应性方面的作用。通过结合这些结果,在溶液酸度和电子转移步骤之间找到了一个很好的平衡。这种平衡对于通过 Cys(pK ≈6.4)最大限度地产生 Ni-肽和 Ni-H 中间物(Ni-R)的质子化以产生 H 至关重要。

相似文献

1
A De Novo-Designed Artificial Metallopeptide Hydrogenase: Insights into Photochemical Processes and the Role of Protonated Cys.
ChemSusChem. 2021 May 20;14(10):2237-2246. doi: 10.1002/cssc.202100122. Epub 2021 Apr 28.
2
Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.
J Biol Inorg Chem. 2016 Jun;21(3):383-94. doi: 10.1007/s00775-016-1348-9. Epub 2016 Mar 3.
3
Proton Transfer Mechanisms in Bimetallic Hydrogenases.
Acc Chem Res. 2021 Jan 5;54(1):232-241. doi: 10.1021/acs.accounts.0c00651. Epub 2020 Dec 16.
4
Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase.
J Am Chem Soc. 2015 Apr 8;137(13):4558-66. doi: 10.1021/jacs.5b01791. Epub 2015 Mar 30.
6
Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
Dalton Trans. 2011 Dec 28;40(48):12793-800. doi: 10.1039/c1dt11166c. Epub 2011 Oct 10.
7
Photocatalytic Hydrogen Evolution by a De Novo Designed Metalloprotein that Undergoes Ni-Mediated Oligomerization Shift.
Chemistry. 2023 Mar 7;29(14):e202202902. doi: 10.1002/chem.202202902. Epub 2023 Feb 6.
8
Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase.
Nat Chem. 2016 Nov;8(11):1054-1060. doi: 10.1038/nchem.2575. Epub 2016 Jul 18.
9
[NiFeSe]-hydrogenase chemistry.
Acc Chem Res. 2015 Nov 17;48(11):2858-65. doi: 10.1021/acs.accounts.5b00326. Epub 2015 Oct 21.
10
A functional [NiFe]-hydrogenase model compound that undergoes biologically relevant reversible thiolate protonation.
J Am Chem Soc. 2012 Dec 26;134(51):20745-55. doi: 10.1021/ja309563p. Epub 2012 Dec 12.

引用本文的文献

1
Electrochemical and Spectroscopic Characterization of Co-Neuroglobin: A Bioelectrocatalyst for H Production.
Inorg Chem. 2025 May 12;64(18):9066-9083. doi: 10.1021/acs.inorgchem.5c00551. Epub 2025 May 2.
3
Recent advances in de novo designed metallopeptides as tailored enzyme mimics.
Curr Opin Chem Biol. 2025 Jun;86:102586. doi: 10.1016/j.cbpa.2025.102586. Epub 2025 Mar 20.
4
Converting a cysteine-rich natively noncatalytic protein to an artificial hydrogenase.
Chem Commun (Camb). 2023 Nov 7;59(89):13325-13328. doi: 10.1039/d3cc02774k.
5
A De Novo Designed Trimeric Metalloprotein as a Ni Model of the Acetyl-CoA Synthase.
Int J Mol Sci. 2023 Jun 19;24(12):10317. doi: 10.3390/ijms241210317.
6
Enzymatic and Bioinspired Systems for Hydrogen Production.
Int J Mol Sci. 2023 May 11;24(10):8605. doi: 10.3390/ijms24108605.
7
Photocatalytic Hydrogen Evolution by a De Novo Designed Metalloprotein that Undergoes Ni-Mediated Oligomerization Shift.
Chemistry. 2023 Mar 7;29(14):e202202902. doi: 10.1002/chem.202202902. Epub 2023 Feb 6.

本文引用的文献

1
Biosynthetic Approaches towards the Design of Artificial Hydrogen-Evolution Catalysts.
Chemistry. 2020 Oct 1;26(55):12494-12509. doi: 10.1002/chem.202001338. Epub 2020 Aug 26.
2
protein design, a retrospective.
Q Rev Biophys. 2020 Feb 11;53:e3. doi: 10.1017/S0033583519000131.
3
Redesign of a Copper Storage Protein into an Artificial Hydrogenase.
ACS Catal. 2019 Jul 5;9(7):5847-5859. doi: 10.1021/acscatal.9b00360. Epub 2019 May 16.
4
Hydrogen evolution from water catalyzed by cobalt-mimochrome VI*a, a synthetic mini-protein.
Chem Sci. 2018 Sep 14;9(45):8582-8589. doi: 10.1039/c8sc01948g. eCollection 2018 Dec 7.
5
Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases.
J Am Chem Soc. 2018 Aug 15;140(32):10250-10262. doi: 10.1021/jacs.8b05194. Epub 2018 Aug 1.
6
CCBuilder 2.0: Powerful and accessible coiled-coil modeling.
Protein Sci. 2018 Jan;27(1):103-111. doi: 10.1002/pro.3279. Epub 2017 Sep 15.
7
Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production.
Chem Sci. 2015 Aug 1;6(8):4855-4859. doi: 10.1039/c5sc01349f. Epub 2015 May 28.
9
Modular Homogeneous Chromophore-Catalyst Assemblies.
Acc Chem Res. 2016 May 17;49(5):835-43. doi: 10.1021/acs.accounts.5b00539. Epub 2016 Apr 22.
10
Hydrogen Evolution from Water under Aerobic Conditions Catalyzed by a Cobalt ATCUN Metallopeptide.
Inorg Chem. 2016 Feb 15;55(4):1355-7. doi: 10.1021/acs.inorgchem.5b02157. Epub 2016 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验