Suppr超能文献

同时管理紊乱的磷酸盐和铁稳态,以纠正慢性肾脏病中的成纤维细胞生长因子 23 及其相关结局。

Simultaneous management of disordered phosphate and iron homeostasis to correct fibroblast growth factor 23 and associated outcomes in chronic kidney disease.

机构信息

Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

出版信息

Curr Opin Nephrol Hypertens. 2020 Jul;29(4):359-366. doi: 10.1097/MNH.0000000000000614.

Abstract

PURPOSE OF REVIEW

Hyperphosphatemia, iron deficiency, and anemia are powerful stimuli of fibroblast growth factor 23 (FGF23) production and are highly prevalent complications of chronic kidney disease (CKD). In this manuscript, we put in perspective the newest insights on FGF23 regulation by iron and phosphate and their effects on CKD progression and associated outcomes. We especially focus on new studies aiming to reduce FGF23 levels, and we present new data that suggest major benefits of combined corrections of iron, phosphate, and FGF23 in CKD.

RECENT FINDINGS

New studies show that simultaneously correcting iron deficiency and hyperphosphatemia in CKD reduces the magnitude of FGF23 increase. Promising therapies using iron-based phosphate binders in CKD might mitigate cardiac and renal injury and improve survival.

SUMMARY

New strategies to lower FGF23 have emerged, and we discuss their benefits and risks in the context of CKD. Novel clinical and preclinical studies highlight the effects of phosphate restriction and iron repletion on FGF23 regulation.

摘要

目的综述

高磷血症、缺铁和贫血是成纤维细胞生长因子 23(FGF23)产生的强大刺激因素,也是慢性肾脏病(CKD)的高发并发症。在本文中,我们从新的角度探讨了铁和磷对 FGF23 的调节及其对 CKD 进展和相关结局的影响。我们特别关注旨在降低 FGF23 水平的新研究,并提出新的数据表明联合纠正铁、磷和 FGF23 在 CKD 中的重要益处。

最近的发现

新的研究表明,同时纠正 CKD 中的缺铁和高磷血症可降低 FGF23 增加的幅度。在 CKD 中使用铁基磷结合剂的有前途的治疗方法可能减轻心脏和肾脏损伤并提高生存率。

总结

已经出现了降低 FGF23 的新策略,我们在 CKD 的背景下讨论了它们的益处和风险。新的临床和临床前研究强调了限制磷酸盐和补充铁对 FGF23 调节的影响。

相似文献

2
Anemia and fibroblast growth factor 23 elevation in chronic kidney disease: homeostatic interactions and emerging therapeutics.
Curr Opin Nephrol Hypertens. 2022 Jul 1;31(4):320-325. doi: 10.1097/MNH.0000000000000797. Epub 2022 Jun 10.
3
The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia.
Int J Mol Sci. 2019 Aug 27;20(17):4195. doi: 10.3390/ijms20174195.
4
Fibroblast growth factor 23 is pumping iron: C-terminal-fibroblast growth factor 23 cleaved peptide and its function in iron metabolism.
Curr Opin Nephrol Hypertens. 2024 Jul 1;33(4):368-374. doi: 10.1097/MNH.0000000000000995. Epub 2024 Apr 25.
5
Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.
Curr Opin Nephrol Hypertens. 2014 Jul;23(4):411-9. doi: 10.1097/01.mnh.0000447020.74593.6f.
7
Ironing out the cross talk between FGF23 and inflammation.
Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F1-F8. doi: 10.1152/ajprenal.00359.2016. Epub 2016 Aug 31.
8
Update on fibroblast growth factor 23 in chronic kidney disease.
Kidney Int. 2012 Oct;82(7):737-47. doi: 10.1038/ki.2012.176. Epub 2012 May 23.
9
Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1369-F1377. doi: 10.1152/ajprenal.00281.2016. Epub 2016 Oct 12.
10
Rationale and Approaches to Phosphate and Fibroblast Growth Factor 23 Reduction in CKD.
J Am Soc Nephrol. 2015 Oct;26(10):2328-39. doi: 10.1681/ASN.2015020117. Epub 2015 May 12.

引用本文的文献

1
Conventional and complementary alternative medicine therapies for renal anemia: a literature review.
Front Endocrinol (Lausanne). 2025 Jan 22;15:1342873. doi: 10.3389/fendo.2024.1342873. eCollection 2024.
2
Management and mechanism of calciphylaxis in a patient treated with the FGFR inhibitor pemigatinib-a case report.
J Gastrointest Oncol. 2024 Feb 29;15(1):478-484. doi: 10.21037/jgo-23-139. Epub 2024 Feb 1.
3
Clinical and Molecular Aspects of Iron Metabolism in Failing Myocytes.
Life (Basel). 2022 Aug 8;12(8):1203. doi: 10.3390/life12081203.
4
Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology.
J Clin Med. 2021 Dec 27;11(1):125. doi: 10.3390/jcm11010125.
5
Klotho, Aging, and the Failing Kidney.
Front Endocrinol (Lausanne). 2020 Aug 27;11:560. doi: 10.3389/fendo.2020.00560. eCollection 2020.

本文引用的文献

1
Dietary phosphate restriction attenuates polycystic kidney disease in mice.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F35-F42. doi: 10.1152/ajprenal.00282.2019. Epub 2019 Nov 4.
5
The Use of Erythropoiesis-Stimulating Agents in Patients With CKD and Cancer: A Clinical Approach.
Am J Kidney Dis. 2019 Nov;74(5):667-674. doi: 10.1053/j.ajkd.2019.04.022. Epub 2019 Aug 5.
6
A Pilot Randomized Trial of Ferric Citrate Coordination Complex for the Treatment of Advanced CKD.
J Am Soc Nephrol. 2019 Aug;30(8):1495-1504. doi: 10.1681/ASN.2018101016. Epub 2019 Jul 5.
7
Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11418-11427. doi: 10.1073/pnas.1815166116. Epub 2019 May 16.
8
Effects of Nicotinamide and Lanthanum Carbonate on Serum Phosphate and Fibroblast Growth Factor-23 in CKD: The COMBINE Trial.
J Am Soc Nephrol. 2019 Jun;30(6):1096-1108. doi: 10.1681/ASN.2018101058. Epub 2019 May 13.
10
Effects of Sevelamer Carbonate in Patients With CKD and Proteinuria: The ANSWER Randomized Trial.
Am J Kidney Dis. 2019 Sep;74(3):338-350. doi: 10.1053/j.ajkd.2019.01.029. Epub 2019 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验