Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India.
School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, JK, India.
PLoS One. 2020 May 26;15(5):e0233493. doi: 10.1371/journal.pone.0233493. eCollection 2020.
Glyoxalase pathway is the major pathway of methylglyoxal detoxification and is ubiquitously present in all organisms ranging from prokaryotes to eukaryotes. Glyoxalase I (GLYI) and Glyoxalase II (GLYII), the two core enzymes of this pathway work together to neutralize methylglyoxal (MG), a dicarbonyl molecule with detrimental cytotoxicity at higher concentrations. The first step towards the detoxification of MG is catalyzed by GLYI, a metalloenzyme that requires divalent metal ions (either Zn2+ as seen in eukaryotes or Ni2+ as in prokaryotes). However, both Zn2+ and Ni2+ dependent GLYIs have been shown to co-exist in a higher eukaryote i.e. Arabidopsis thaliana. In the present study, we determine the role of both Zn2+ dependent (AtGLYI2) and Ni2+ dependent (AtGLYI3, AtGLYI6) GLYIs from Arabidopsis in salinity stress tolerance. AtGLYI2 overexpressing Arabidopsis plants showed better growth rate while maintaining lower levels of MG under high saline conditions. They were taller with more number of silique formation with respect to their Ni2+ dependent counterparts. Further, lack in germination of Arabidopsis AtGLYI2 mutants in presence of exogenous MG indicates the direct involvement of Zn2+ dependent GLYI in MG detoxification, suggesting Zn2+ dependent GLYI as the main enzyme responsible for MG detoxification and salinity stress tolerance.
糖氧化解毒途径是甲基乙二醛解毒的主要途径,存在于从原核生物到真核生物等所有生物体中。该途径的两个核心酶,即醛缩酶 I(GLYI)和醛缩酶 II(GLYII),共同作用以中和甲基乙二醛(MG),MG 是一种二羰基分子,在较高浓度下具有有害的细胞毒性。MG 解毒的第一步是由 GLYI 催化的,GLYI 是一种金属酶,需要二价金属离子(无论是真核生物中的 Zn2+还是原核生物中的 Ni2+)。然而,已证明 Zn2+和 Ni2+依赖性 GLYI 均可在高等真核生物(即拟南芥)中共存。在本研究中,我们确定了拟南芥中 Zn2+依赖性(AtGLYI2)和 Ni2+依赖性(AtGLYI3、AtGLYI6)GLYI 的作用,以研究其在耐盐性方面的作用。过表达 AtGLYI2 的拟南芥植物在高盐条件下表现出更好的生长速度,同时保持较低水平的 MG。与 Ni2+依赖性对应物相比,它们的株高更高,形成的蒴果数量更多。此外,在存在外源 MG 的情况下,拟南芥 AtGLYI2 突变体的发芽缺失表明 Zn2+依赖性 GLYI 直接参与 MG 解毒,表明 Zn2+依赖性 GLYI 是 MG 解毒和耐盐性的主要酶。