STLO, INRAE, Agrocampus Ouest, Rennes, France.
GQE-Le Moulon, INRAE, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
PLoS One. 2020 May 26;15(5):e0233285. doi: 10.1371/journal.pone.0233285. eCollection 2020.
Fermentation by microorganisms is a key step in the production of traditional food products such as bread, cheese, beer and wine. In these fermentative ecosystems, microorganisms interact in various ways, namely competition, predation, commensalism and mutualism. Traditional wine fermentation is a complex microbial process performed by Saccharomyces and non-Saccharomyces (NS) yeast species. To better understand the different interactions occurring within wine fermentation, isolated yeast cultures were compared with mixed co-cultures of one reference strain of S. cerevisiae with one strain of four NS yeast species (Metschnikowia pulcherrima, M. fructicola, Hanseniaspora opuntiae and H. uvarum). In each case, we studied population dynamics, resource consumed and metabolites produced from central carbon metabolism. This phenotyping of competition kinetics allowed us to confirm the main mechanisms of interaction between strains of four NS species. S. cerevisiae competed with H. uvarum and H. opuntiae for resources although both Hanseniaspora species were characterized by a strong mortality either in mono or mixed fermentations. M. pulcherrima and M. fructicola displayed a negative interaction with the S. cerevisiae strain tested, with a decrease in viability in co-culture. Overall, this work highlights the importance of measuring specific cell populations in mixed cultures and their metabolite kinetics to understand yeast-yeast interactions. These results are a first step towards ecological engineering and the rational design of optimal multi-species starter consortia using modeling tools. In particular the originality of this paper is for the first times to highlight the joint-effect of different species population dynamics on glycerol production and also to discuss on the putative role of lipid uptake on the limitation of some non-conventional species growth although interaction processes.
微生物发酵是面包、奶酪、啤酒和葡萄酒等传统食品生产的关键步骤。在这些发酵生态系统中,微生物以各种方式相互作用,包括竞争、捕食、共生和互利共生。传统的葡萄酒发酵是一个复杂的微生物过程,由酿酒酵母和非酿酒酵母(NS)酵母完成。为了更好地了解葡萄酒发酵过程中发生的不同相互作用,我们比较了分离的酵母培养物与单一酿酒酵母参考菌株与四种 NS 酵母(Metschnikowia pulcherrima、M. fructicola、Hanseniaspora opuntiae 和 H. uvarum)混合共培养物。在每种情况下,我们研究了种群动态、消耗的资源和中心碳代谢产生的代谢物。这种竞争动力学表型分析使我们能够确认四种 NS 菌株之间相互作用的主要机制。酿酒酵母与 Hanseniaspora opuntiae 和 H. uvarum 竞争资源,尽管 Hanseniaspora 两个物种在单一或混合发酵中都表现出很强的死亡率。M. pulcherrima 和 M. fructicola 与测试的酿酒酵母菌株表现出负相互作用,在共培养物中活力下降。总的来说,这项工作强调了在混合培养物中测量特定细胞群体及其代谢物动力学以了解酵母-酵母相互作用的重要性。这些结果是朝着生态工程和使用建模工具合理设计最佳多物种起始共混物迈出的第一步。特别是本文的新颖之处在于首次强调了不同物种种群动态对甘油产量的联合效应,以及讨论了脂质摄取在某些非传统物种生长受限中的潜在作用,尽管存在相互作用过程。