Suppr超能文献

近似密度泛函理论和准粒子理论中轨道能量、光学能隙与基本能隙以及激子位移之间的关系

Relationships between Orbital Energies, Optical and Fundamental Gaps, and Exciton Shifts in Approximate Density Functional Theory and Quasiparticle Theory.

作者信息

Shu Yinan, Truhlar Donald G

机构信息

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States.

出版信息

J Chem Theory Comput. 2020 Jul 14;16(7):4337-4350. doi: 10.1021/acs.jctc.0c00320. Epub 2020 Jun 11.

Abstract

The relationships between Kohn-Sham (KS) and generalized KS (GKS) density functional orbital energies and fundamental gaps or optical gaps raise many interesting questions including the physical meanings of KS and GKS orbital energies when computed with currently available approximate density functionals (ADFs). In this work, by examining three diverse databases with various ADFs, we examine such relations from the point of view of the exciton shift of quasiparticle theory. We start by calculating a large number of excitation energies by time-dependent density functional theory (TDDFT) with a large number of ADFs. To relate the exciton shift implicit in TDDFT to the exciton shift that is explicit in Green's function theory, we define the exciton shift in TDDFT as the difference of the response shift and the quasiparticle shift. We found a strong correlation between the response shift and the amount of Hartree-Fock exchange included in the density functional, with the response shift varying between -1 and 5 eV. This range is an order of magnitude larger than the mean errors of the TDDFT excitation energies. This result suggests that, with currently available functionals, the KS or GKS orbital energies should be treated as intermediate mathematical variables in the calculation of excitation energies rather than as the energies of independent-particle reference states for quasiparticle theory.

摘要

科恩-沈(KS)和广义KS(GKS)密度泛函轨道能量与基本能隙或光学能隙之间的关系引发了许多有趣的问题,其中包括使用当前可用的近似密度泛函(ADF)进行计算时KS和GKS轨道能量的物理意义。在这项工作中,通过使用各种ADF检查三个不同的数据库,我们从准粒子理论的激子位移角度研究了此类关系。我们首先使用大量的ADF通过含时密度泛函理论(TDDFT)计算大量的激发能。为了将TDDFT中隐含的激子位移与格林函数理论中明确的激子位移联系起来,我们将TDDFT中的激子位移定义为响应位移与准粒子位移之差。我们发现响应位移与密度泛函中包含的哈特里-福克交换量之间存在很强的相关性,响应位移在-1至5电子伏特之间变化。这个范围比TDDFT激发能的平均误差大一个数量级。这一结果表明,使用当前可用的泛函时,在计算激发能时,KS或GKS轨道能量应被视为中间数学变量,而不是准粒子理论中独立粒子参考态的能量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验