The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
Aust N Z J Psychiatry. 2020 Aug;54(8):832-842. doi: 10.1177/0004867420924089. Epub 2020 May 26.
Bipolar disorder in the depressive phase (BDd) may be misdiagnosed as major depressive disorder (MDD), resulting in poor treatment outcomes. To identify biomarkers distinguishing BDd from MDD is of substantial clinical significance. This study aimed to characterize specific alterations in intrinsic functional connectivity (FC) patterns in BDd and MDD by combining whole-brain static and dynamic FC.
A total of 40 MDD and 38 BDd patients, and 50 age-, sex-, education-, and handedness-matched healthy controls (HCs) were included in this study. Static and dynamic FC strengths (FCSs) were analyzed using complete time-series correlations and sliding window correlations, respectively. One-way analysis of variance was performed to test group effects. The combined static and dynamic FCSs were then used to distinguish BDd from MDD and to predict clinical symptom severity.
Compared with HCs, BDd patients showed lower static FCS in the medial orbitofrontal cortex and greater static FCS in the caudate, while MDD patients exhibited greater static FCS in the medial orbitofrontal cortex. BDd patients also demonstrated greater static and dynamic FCSs in the thalamus compared with both MDD patients and HCs, while MDD patients exhibited greater dynamic FCS in the precentral gyrus compared with both BDd patients and HCs. Combined static and dynamic FCSs yielded higher accuracy than either static or dynamic FCS analysis alone, and also predicted anhedonia severity in BDd patients and negative mood severity in MDD patients.
Altered FC within frontal-striatal-thalamic circuits of BDd patients and within the default mode network/sensorimotor network of MDD patients accurately distinguishes between these disorders. These unique FC patterns may serve as biomarkers for differential diagnosis and provide clues to the pathogenesis of mood disorders.
双相情感障碍抑郁相(BDd)可能被误诊为重度抑郁症(MDD),导致治疗效果不佳。因此,寻找能够区分 BDd 和 MDD 的生物标志物具有重要的临床意义。本研究旨在通过联合全脑静息态和动态功能连接(FC),来描绘 BDd 和 MDD 患者内在 FC 模式的特异性改变。
本研究共纳入 40 例 MDD 患者、38 例 BDd 患者和 50 名年龄、性别、受教育程度和利手相匹配的健康对照者(HCs)。分别采用全时间序列相关和滑动窗口相关来分析静息态和动态 FC 强度(FCS)。采用单因素方差分析来检验组间差异。然后采用联合静息态和动态 FCS 来区分 BDd 和 MDD,并预测临床症状严重程度。
与 HCs 相比,BDd 患者的内侧眶额皮质静息态 FCS 降低,尾状核静息态 FCS 增加,而 MDD 患者的内侧眶额皮质静息态 FCS 增加。BDd 患者的丘脑静息态和动态 FCS 也高于 MDD 患者和 HCs,而 MDD 患者的中央前回的动态 FCS 高于 MDD 患者和 HCs。与单独的静息态或动态 FCS 分析相比,联合静息态和动态 FCS 具有更高的准确性,并且可以预测 BDd 患者的快感缺失严重程度和 MDD 患者的负性情绪严重程度。
BDd 患者的额皮质-纹状体-丘脑回路和 MDD 患者的默认模式网络/感觉运动网络内的 FC 改变能够准确地区分这两种疾病。这些独特的 FC 模式可能作为区分这些疾病的生物标志物,并为心境障碍的发病机制提供线索。