Suppr超能文献

利用匹配子空间检测器算法和近红外高光谱成像技术对小麦粉中的花生进行亚像素检测。

Subpixel detection of peanut in wheat flour using a matched subspace detector algorithm and near-infrared hyperspectral imaging.

机构信息

UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRAE, Université Paris-Saclay, 75005, Paris, France. Groupe "Chimiométrie pour la Caractérisation de Biomarqueurs - C(2)B"; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France; GreenTropism, Paris, France.

Unité de Statistiques, Sensométrie, Chimiométrie, INRAE/ONIRIS, Nantes, France; ChemHouse Research Group, Montpellier, France.

出版信息

Talanta. 2020 Aug 15;216:120993. doi: 10.1016/j.talanta.2020.120993. Epub 2020 Apr 9.

Abstract

The detection of adulterations in food powder products represents a high interest especially when it concerns the health of the consumers. The food industry is concerned by peanut adulteration since it is a major food allergen often used in transformed food products. Near-infrared hyperspectral imaging is an emerging technology for food inspection. It was used in this work to detect peanut flour adulteration in wheat flour. The detection of peanut particles was challenging for two reasons: the particle size is smaller than the pixel size leading to impure spectral profiles; peanut and wheat flour exhibit similar spectral signatures and variability. A Matched Subspace Detector (MSD) algorithm was designed to take these difficulties into account and detect peanut adulteration at the pixel scale using the associated spectrum. A set of simulated data was generated to overcome the lack of reference values at the pixel scale and to design appropriate MSD algorithms. The best designs were compared by estimating the detection sensitivity. Defatted peanut flour and wheat flour were mixed in eight different proportions (from 0.02% to 20%) to test the detection performances of the algorithm on real hyperspectral measurements. The number and positions of the detected pixels were investigated to show the relevancy of the results and validate the design of the MSD algorithm. The presented work proved that the use of hyperspectral imaging and a fine-tuned MSD algorithm enables to detect a global adulteration of 0.2% of peanut in wheat flour.

摘要

食品粉末产品掺假的检测是一项非常重要的任务,尤其是当涉及到消费者的健康时。食品行业对花生掺假问题非常关注,因为花生是一种主要的食物过敏原,经常被用于加工食品中。近红外高光谱成像技术是一种新兴的食品检测技术。本研究将其用于检测小麦粉中的花生粉掺假。由于两个原因,检测花生颗粒具有挑战性:颗粒尺寸小于像素尺寸,导致不纯的光谱轮廓;花生和小麦粉表现出相似的光谱特征和可变性。设计了一种匹配子空间检测器(MSD)算法来考虑这些困难,并使用相关光谱在像素尺度上检测花生掺假。为了克服像素尺度上缺乏参考值的问题,并设计适当的 MSD 算法,生成了一组模拟数据。比较了最佳设计,通过估计检测灵敏度来评估它们的性能。对脱脂花生粉和小麦粉进行了 8 种不同比例(0.02%至 20%)的混合,以测试算法在真实高光谱测量中的检测性能。研究了检测到的像素的数量和位置,以展示结果的相关性,并验证 MSD 算法的设计。研究结果表明,使用高光谱成像和经过微调的 MSD 算法,可以检测到小麦粉中 0.2%的花生整体掺假。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验