Suppr超能文献

利用多粒度级联森林相关模型结合高光谱成像融合信息测定面粉掺杂物

Determination of adulteration in wheat flour using multi-grained cascade forest-related models coupled with the fusion information of hyperspectral imaging.

机构信息

National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China.

National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Apr 5;270:120813. doi: 10.1016/j.saa.2021.120813. Epub 2021 Dec 28.

Abstract

Wheat flour (WF) is a common ingredient in staple foods. However, the presence of intentional or unintentional adulterants makes it difficult to guarantee WF quality. Multi-grained cascade forest (gcForest) model, a non-neural network deep learning structure, fused with image-spectra features from hyperspectral imaging (HSI) was employed for detecting adulterant type (peanut, walnut, or benzoyl peroxide) and the corresponding concentration (0.03%, 0.05%, 0.1%, 0.5%, 1%, and 2%). Based on the spectra of full wavelength and effective wavelength (EW) from hyperspectral images of WF samples, the gcForest-related models exhibited high performance (lowest ACC = 92.45%) and stability (lowest area under the curve = 0.9986). Furthermore, the fusion of the EW and the image features extracted by the symmetric all convolutional neural network (SACNN) was used to establish the gcForest-related models. The maximum accuracy improvement of the fusion feature model relative to the single spectral model and the image model was 2.45% and 44.37%, respectively. The results indicate that the gcForest-related model, combined with the image-spectra fusion feature of HSI, provides an effective tool for detection in food and agriculture.

摘要

小麦粉(WF)是主食中的常见成分。然而,由于存在故意或非故意的掺杂物,因此很难保证 WF 的质量。多谷物级联森林(gcForest)模型是一种非神经网络深度学习结构,融合了高光谱图像(HSI)的图像-光谱特征,用于检测掺杂物类型(花生、核桃或过氧化苯甲酰)和相应的浓度(0.03%、0.05%、0.1%、0.5%、1%和 2%)。基于 WF 样品高光谱图像的全波长和有效波长(EW)的光谱,gcForest 相关模型表现出较高的性能(最低准确率=92.45%)和稳定性(最低曲线下面积=0.9986)。此外,融合 EW 和对称全卷积神经网络(SACNN)提取的图像特征,建立 gcForest 相关模型。与单一光谱模型和图像模型相比,融合特征模型的最大精度提高分别为 2.45%和 44.37%。结果表明,gcForest 相关模型与 HSI 的图像-光谱融合特征相结合,为食品和农业检测提供了有效的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验