Suppr超能文献

74种密度泛函近似中的单电子自相互作用误差:以类氢单核和双核体系为例的研究

The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems.

作者信息

Lonsdale Dale R, Goerigk Lars

机构信息

School of Chemistry, The University of Melbourne, Parkville, Australia.

出版信息

Phys Chem Chem Phys. 2020 Jul 22;22(28):15805-15830. doi: 10.1039/d0cp01275k.

Abstract

The self-interaction error (SIE), i.e. unphysical interactions of electrons with themselves, has plagued developers and users of Density Functional Approximations (DFAs) since the inception of Density Functional Theory (DFT). Formally, it can be separated into the one-electron and many-electron SIE; herein we present one of the most comprehensive studies of the first. While we focus mostly on the total SIE, we also make use of two different decompositions. The first is a separation into functional and density-driven errors as championed by Sim, Burke and co-workers [J. Phys. Chem. Lett., 2018, 9, 6385-6392]; the second separates the error into exchange, correlation, and one-electron components, with the latter being a density error that has not been discussed in this form before. After investigating the familiar hydrogen atom and dihydrogen cation, we establish a relationship between the SIE and the nuclear charge with the help of a series of heavier hydrogenic analogues. For the mononuclear systems and the diatomics at the dissociation limit, this relationship is linear in nature with prominent exceptions, mostly belonging to the Minnesota and range-separated (double-)hybrid DFAs. For the first time, we also show how the magnitude of the SIE depends on the underlying atomic-orbital basis set and how DFAs that rely on a popular van-der-Waals DFT type London-dispersion term exhibit "self-dispersion". We find that range separation is not a panacea for solving the one-electron SIE. DFAs that have been developed to be one-electron SIE free for one system, such as the hydrogen atom, show larger errors for heavier hydrogenic systems. Often, one-electron SIE-free DFAs rely on fortuitous error cancellation between their exchange and correlation components. An analysis of the most robust methods for general applications to date reveals that they suffer moderately from the one-electron SIE, while DFAs that are nearly SIE-free do not perform well in applications. Implicit in the continued existence of the one-electron SIE is that well-performing DFAs continue to suffer insufficiencies at their fundamental levels that are being compensated for by the SIE. Our analysis includes more than 250 000 datapoints, resulting in multiple insights that may drive future developments of new DFAs or SIE corrections.

摘要

自密度泛函理论(DFT)诞生以来,自相互作用误差(SIE),即电子与自身的非物理相互作用,一直困扰着密度泛函近似(DFA)的开发者和使用者。从形式上讲,它可以分为单电子和多电子SIE;在此我们展示了对前者最全面的研究之一。虽然我们主要关注总SIE,但我们也使用了两种不同的分解方法。第一种是按照Sim、Burke及其同事所倡导的那样,将其分解为泛函驱动误差和密度驱动误差[《物理化学快报》,2018年,9卷,6385 - 6392页];第二种是将误差分解为交换、关联和单电子分量,其中后者是一种以前未以这种形式讨论过的密度误差。在研究了常见的氢原子和氢分子阳离子之后,我们借助一系列较重的类氢类似物建立了SIE与核电荷之间的关系。对于单核体系以及处于解离极限的双原子分子,这种关系本质上是线性的,但有一些显著的例外,大多属于明尼苏达泛函和范围分离(双)杂化DFA。我们首次还展示了SIE的大小如何取决于基础原子轨道基组,以及依赖于流行的范德华DFT型伦敦色散项的DFA如何表现出“自色散”。我们发现范围分离并非解决单电子SIE的万灵药。为使一个体系(如氢原子)无单电子SIE而开发的DFA,对于较重的类氢体系显示出更大的误差。通常,无单电子SIE的DFA依赖于其交换和关联分量之间偶然的误差抵消。对迄今为止适用于一般应用的最稳健方法的分析表明,它们适度地受到单电子SIE的影响,而几乎无SIE的DFA在应用中表现不佳。单电子SIE持续存在意味着性能良好的DFA在其基本层面上仍然存在不足,而这些不足正由SIE进行补偿。我们的分析包含超过250000个数据点,从而得出了多个可能推动新DFA或SIE校正未来发展的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验