Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel.
J Chem Theory Comput. 2021 Mar 9;17(3):1368-1379. doi: 10.1021/acs.jctc.0c01055. Epub 2021 Feb 24.
For the large and chemically diverse GMTKN55 benchmark suite, we have studied the performance of density-corrected density functional theory (HF-DFT), compared to self-consistent DFT, for several pure and hybrid GGA and meta-GGA exchange-correlation (XC) functionals (PBE, BLYP, TPSS, and SCAN) as a function of the percentage of HF exchange in the hybrid. The D4 empirical dispersion correction has been added throughout. For subsets dominated by dynamical correlation, HF-DFT is highly beneficial, particularly at low HF exchange percentages. This is especially true for noncovalent interactions where the electrostatic component is dominant, such as hydrogen and halogen bonds: for π-stacking, HF-DFT is detrimental. For subsets with significant nondynamical correlation (i.e., where a Hartree-Fock determinant is not a good zero-order wavefunction), HF-DFT may do more harm than good. While the self-consistent series show optima at or near 37.5% (i.e., 3/8) for all four XC functionals-consistent with Grimme's proposal of the PBE38 functional-HF-BLYP-D4, HF-PBE-D4, and HF-TPSS-D4 all exhibit minima nearer 25% (i.e., 1/4) as the use of HF orbitals greatly mitigates the error at 25% for barrier heights. Intriguingly, for HF-SCAN-D4, the minimum is near 10%, but the weighted mean absolute error (WTMAD2) for GMTKN55 is only barely lower than that for HF-SCAN-D4 (i.e., where the post-HF step is a pure meta-GGA). The latter becomes an attractive option, only slightly more costly than pure Hartree-Fock, and devoid of adjustable parameters other than the three in the dispersion correction. Moreover, its WTMAD2 is only surpassed by the highly empirical M06-2X and by the combinatorially optimized empirical range-separated hybrids ωB97X-V and ωB97M-V.
对于大型且化学性质多样的 GMTKN55 基准套件,我们研究了密度校正密度泛函理论(HF-DFT)与自洽密度泛函理论(SC-DFT)的性能比较,使用了几种纯和混合广义梯度近似(GGA)和杂化泛函(PBE、BLYP、TPSS 和 SCAN),并考虑了混合泛函中 HF 交换的百分比。整个过程都添加了 D4 经验色散校正。对于主要由动力学相关控制的子集,HF-DFT 非常有益,尤其是在 HF 交换百分比较低的情况下。对于静电部分占主导的非共价相互作用(如氢键和卤键),情况尤其如此:对于π堆积,HF-DFT 是有害的。对于具有显著非动力学相关(即 HF 行列式不是一个好的零阶波函数)的子集,HF-DFT 可能弊大于利。尽管自洽系列对于所有四种 XC 泛函(与 Grimme 提出的 PBE38 泛函一致)都在 37.5%(即 3/8)或附近显示出最佳值,但 HF-BLYP-D4、HF-PBE-D4 和 HF-TPSS-D4 都在 25%(即 1/4)附近显示出最小值,因为 HF 轨道的使用极大地减轻了 25%时势垒高度的误差。有趣的是,对于 HF-SCAN-D4,最小值接近 10%,但 GMTKN55 的加权平均绝对误差(WTMAD2)仅略低于 HF-SCAN-D4(即后 HF 步骤是纯杂化 GGA)。后者成为一个有吸引力的选择,仅比纯 Hartree-Fock 略贵,并且除了色散校正中的三个参数之外,没有其他可调参数。此外,它的 WTMAD2 仅被高度经验性的 M06-2X 和组合优化的经验范围分离杂化 ωB97X-V 和 ωB97M-V 超越。