IBM Research, Yorktown Heights, NY, USA.
Biomedical Informatics, Arizona State University, Tempe, USA.
Drug Saf. 2019 Jan;42(1):135-146. doi: 10.1007/s40264-018-0764-x.
Adverse drug events (ADEs) occur in approximately 2-5% of hospitalized patients, often resulting in poor outcomes or even death. Extraction of ADEs from clinical narratives can accelerate and automate pharmacovigilance. Using state-of-the-art deep-learning neural networks to jointly model concept and relation extraction, we achieved the highest integrated task score in the 2018 Medication and Adverse Drug Event (MADE) 1.0 challenge.
We used a combined bidirectional long short-term memory (BiLSTM) and conditional random fields (CRF) neural network to detect medical entities relevant to ADEs and a combined BiLSTM and attention network to determine relations, including the adverse drug reaction relation between medication and sign or symptom entities. Using these models, we conducted three experiments: (1) separate and sequential modeling of entities and relations; (2) joint modeling where relations between medications and sign or symptoms determined ADE and indication entities; (3) use of information from external resources such as the US FDA's adverse event database as additional input to the second method.
Joint modeling improved the overall task accuracy from 0.62 to 0.65 F measure, and the additional use of external resources improved the accuracy to 0.66 F measure. Given the gold-standard medical entity labels, the joint model plus external resources method achieved F measures of 0.83 for ADE-relevant medical entity detection and 0.87 for relation detection.
It is important to use joint modeling techniques and external resources for effectively detecting ADEs from clinical narratives in electronic health record (EHR) systems. While the extraction of entities and relations individually achieved high accuracy, the integrated task still has room for further improvement.
约 2-5%的住院患者会发生药物不良反应 (ADE),这往往导致不良后果甚至死亡。从临床叙述中提取 ADE 可以加速和自动化药物警戒。我们使用最先进的深度学习神经网络联合建模概念和关系提取,在 2018 年药物和药物不良反应 (MADE)1.0 挑战赛中取得了最高的综合任务得分。
我们使用联合双向长短时记忆网络 (BiLSTM) 和条件随机场 (CRF) 神经网络来检测与 ADE 相关的医学实体,并使用联合 BiLSTM 和注意力网络来确定关系,包括药物与体征或症状实体之间的药物不良反应关系。使用这些模型,我们进行了三项实验:(1) 实体和关系的单独和顺序建模;(2) 联合建模,其中药物与体征或症状之间的关系确定 ADE 和指示实体;(3) 使用外部资源(如美国 FDA 的不良事件数据库)的信息作为第二种方法的额外输入。
联合建模将整体任务准确率从 0.62 提高到 0.65 F 度量,额外使用外部资源将准确率提高到 0.66 F 度量。给定金标准医学实体标签,联合模型加外部资源方法在 ADE 相关医学实体检测方面的 F 度量为 0.83,在关系检测方面的 F 度量为 0.87。
在电子健康记录 (EHR) 系统中从临床叙述中有效检测 ADE 时,使用联合建模技术和外部资源非常重要。虽然单独提取实体和关系的准确率很高,但综合任务仍有进一步提高的空间。