Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France.
Plant Physiol. 2020 Aug;183(4):1502-1516. doi: 10.1104/pp.20.00222. Epub 2020 May 27.
N-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. In plants, the biological function of NTA remains enigmatic. The dominant -acetyltransferase (Nat) in Arabidopsis () is NatA, which cotranslationally catalyzes acetylation of ∼40% of the proteome. The core NatA complex consists of the catalytic subunit NAA10 and the ribosome-anchoring subunit NAA15. In human (), fruit fly (), and yeast (), this core NatA complex interacts with NAA50 to form the NatE complex. While in metazoa, NAA50 has -acetyltransferase activity, yeast NAA50 is catalytically inactive and positions NatA at the ribosome tunnel exit. Here, we report the identification and characterization of Arabidopsis NAA50 (AT5G11340). Consistent with its putative function as a cotranslationally acting Nat, AtNAA50-EYFP localized to the cytosol and the endoplasmic reticulum but also to the nuclei. We demonstrate that purified AtNAA50 displays N-terminal acetyltransferase and lysine-ε-autoacetyltransferase activity in vitro. Global -acetylome profiling of cells expressing AtNAA50 revealed conservation of NatE substrate specificity between plants and humans. Unlike the embryo-lethal phenotype caused by the absence of AtNAA10 and AtNAA15, loss of NAA50 expression resulted in severe growth retardation and infertility in two Arabidopsis transfer DNA insertion lines ( and ). The phenotype of was rescued by the expression of HsNAA50 or AtNAA50. In contrast, the inactive ScNAA50 failed to complement Remarkably, loss of NAA50 expression did not affect NTA of known NatA substrates and caused the accumulation of proteins involved in stress responses. Overall, our results emphasize a relevant role of AtNAA50 in plant defense and development, which is independent of the essential NatA activity.
N-端乙酰化(NTA)是真核生物中普遍存在的蛋白质修饰。在植物中,NTA 的生物学功能仍然是个谜。拟南芥(Arabidopsis)中的主要乙酰转移酶(Nat)是 NatA,它共翻译催化约 40%的蛋白质组乙酰化。核心 NatA 复合物由催化亚基 NAA10 和核糖体锚定亚基 NAA15 组成。在人类()、果蝇()和酵母()中,这个核心 NatA 复合物与 NAA50 相互作用形成 NatE 复合物。然而,在后生动物中,NAA50 具有 -乙酰转移酶活性,而酵母 NAA50 没有催化活性,它将 NatA 定位在核糖体隧道出口处。在这里,我们报道了拟南芥 NAA50(AT5G11340)的鉴定和特征。与它作为共翻译作用的 Nat 的假定功能一致,AtNAA50-EYFP 定位于细胞质和内质网,但也定位于细胞核。我们证明,纯化的 AtNAA50 在体外显示 N-端乙酰转移酶和赖氨酸-ε-自动乙酰转移酶活性。表达 AtNAA50 的细胞的全 -乙酰组谱分析表明,植物和人类之间 NatE 底物特异性的保守性。与 AtNAA10 和 AtNAA15 缺失导致胚胎致死表型不同,NAA50 表达缺失导致两个拟南芥转移 DNA 插入系(和)严重生长迟缓和不育。HsNAA50 或 AtNAA50 的表达挽救了 的表型。相比之下,无活性的 ScNAA50 无法补充 值得注意的是,NAA50 表达缺失不影响已知 NatA 底物的 NTA,并导致参与应激反应的蛋白质积累。总体而言,我们的结果强调了 AtNAA50 在植物防御和发育中的重要作用,这与必需的 NatA 活性无关。