Suppr超能文献

基于质粒的反向遗传学在轮状病毒中探测磷酸化依赖性质体形成。

Plasmid-based reverse genetics for probing phosphorylation-dependent viroplasm formation in rotaviruses.

机构信息

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States.

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States; Department of Medicine, Divisions of Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, United States.

出版信息

Virus Res. 2021 Jan 2;291:198193. doi: 10.1016/j.virusres.2020.198193. Epub 2020 Oct 11.

Abstract

Rotavirus (RV) replication occurs in cytoplasmic compartments, known as viroplasms, that are composed of viral and cellular proteins. Viroplasm formation requires RV nonstructural proteins NSP2 and NSP5 and cellular lipid droplets (LDs); however, the mechanisms required for viroplasm assembly remain largely unknown. We previously identified two conformationally-distinct forms of NSP2 (dNSP2, vNSP2) found in RV-infected cells that interact differentially with hypo- and hyperphosphorylated NSP5, respectively, and indicate a coordinated phosphorylation-dependent mechanism regulating viroplasm assembly. We also reported that phosphorylation of dNSP2 on serine 313 by the cellular kinase CK1α triggers the localization of vNSP2 to sites of viroplasm assembly and its association with hyperphosphorylated NSP5. To directly evaluate the role of CK1α-mediated NSP2 phosphorylation on viroplasm formation, we used a recently published plasmid-based reverse genetics method to generate a recombinant rotavirus (rRV) with a phosphomimetic NSP2 mutation (rRV NSP2 S313D). The rRV NSP2 S313D virus is significantly delayed in viroplasm formation, virus replication, and interferes with wild type RV replication during co-infection. The rRV NSP2 S313A virus was not rescued. Taking advantage of the delay in viroplasm formation, the NSP2 S313D phosphomimetic mutant was used as a tool to observe very early events in viroplasm assembly. We show that (1) viroplasm assembly correlates with NSP5 hyperphosphorylation, and (2) that vNSP2 S313D co-localizes with RV-induced LDs without NSP5, suggesting that vNSP2 phospho-S313 is sufficient for interacting with LDs and may be the virus factor required for RV-induced LD formation. Further studies with the rRV NSP2 S313D virus are expected to reveal new aspects of viroplasm and LD initiation and assembly.

摘要

轮状病毒 (RV) 的复制发生在细胞质隔室中,称为 viroplasms,由病毒和细胞蛋白组成。Viroplasm 的形成需要 RV 非结构蛋白 NSP2 和 NSP5 和细胞脂滴 (LDs);然而,viroplasm 组装所需的机制在很大程度上仍然未知。我们之前发现了两种构象不同的 NSP2 形式 (dNSP2,vNSP2),它们分别与低磷酸化和高磷酸化 NSP5 相互作用,并表明存在一种协调的磷酸化依赖机制来调节 viroplasm 组装。我们还报告说,细胞激酶 CK1α 对 dNSP2 丝氨酸 313 的磷酸化触发 vNSP2 定位到 viroplasm 组装部位,并与高磷酸化 NSP5 相关联。为了直接评估 CK1α 介导的 NSP2 磷酸化对 viroplasm 形成的作用,我们使用最近发表的基于质粒的反向遗传学方法生成了一种具有磷酸模拟 NSP2 突变的重组轮状病毒 (rRV NSP2 S313D)。rRV NSP2 S313D 病毒在 viroplasm 形成、病毒复制和在共感染期间干扰野生型 RV 复制方面明显延迟。rRV NSP2 S313A 病毒未被挽救。利用 viroplasm 形成的延迟,NSP2 S313D 磷酸模拟突变体被用作工具来观察 viroplasm 组装的早期事件。我们表明:(1) viroplasm 组装与 NSP5 高度磷酸化相关;(2) vNSP2 S313D 与 RV 诱导的 LD 共定位而无 NSP5,表明 vNSP2 磷酸化 S313 足以与 LD 相互作用,并且可能是 RV 诱导的 LD 形成所需的病毒因子。预计使用 rRV NSP2 S313D 病毒进行进一步研究将揭示 viroplasm 和 LD 起始和组装的新方面。

相似文献

1
Plasmid-based reverse genetics for probing phosphorylation-dependent viroplasm formation in rotaviruses.
Virus Res. 2021 Jan 2;291:198193. doi: 10.1016/j.virusres.2020.198193. Epub 2020 Oct 11.
5
Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E12015-E12023. doi: 10.1073/pnas.1717944115. Epub 2018 Dec 3.
6
Rotavirus Spike Protein VP4 Mediates Viroplasm Assembly by Association to Actin Filaments.
J Virol. 2022 Sep 14;96(17):e0107422. doi: 10.1128/jvi.01074-22. Epub 2022 Aug 8.
7
Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J.
J Virol. 2024 Sep 17;98(9):e0097524. doi: 10.1128/jvi.00975-24. Epub 2024 Aug 28.
8
Viroplasms: Assembly and Functions of Rotavirus Replication Factories.
Viruses. 2021 Jul 12;13(7):1349. doi: 10.3390/v13071349.
9
Flexibility of the Rotavirus NSP2 C-Terminal Region Supports Factory Formation via Liquid-Liquid Phase Separation.
J Virol. 2023 Feb 28;97(2):e0003923. doi: 10.1128/jvi.00039-23. Epub 2023 Feb 7.
10
Conserved Rotavirus NSP5 and VP2 Domains Interact and Affect Viroplasm.
J Virol. 2020 Mar 17;94(7). doi: 10.1128/JVI.01965-19.

引用本文的文献

2
Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro.
Viruses. 2023 Aug 16;15(8):1750. doi: 10.3390/v15081750.
4
Liquid Phase Partitioning in Virus Replication: Observations and Opportunities.
Annu Rev Virol. 2022 Sep 29;9(1):285-306. doi: 10.1146/annurev-virology-093020-013659. Epub 2022 Jun 16.
6
Viroplasms: Assembly and Functions of Rotavirus Replication Factories.
Viruses. 2021 Jul 12;13(7):1349. doi: 10.3390/v13071349.
7
Advances in the Development of Antiviral Compounds for Rotavirus Infections.
mBio. 2021 May 11;12(3):e00111-21. doi: 10.1128/mBio.00111-21.

本文引用的文献

1
Generation of recombinant rotaviruses from just 11 cDNAs encoding a viral genome.
Virus Res. 2020 Sep;286:198075. doi: 10.1016/j.virusres.2020.198075. Epub 2020 Jun 24.
5
LDAF1 and Seipin Form a Lipid Droplet Assembly Complex.
Dev Cell. 2019 Dec 2;51(5):551-563.e7. doi: 10.1016/j.devcel.2019.10.006. Epub 2019 Nov 7.
6
Reverse Genetics System for a Human Group A Rotavirus.
J Virol. 2020 Jan 6;94(2). doi: 10.1128/JVI.00963-19.
8
Viral Generated Inter-Organelle Contacts Redirect Lipid Flux for Genome Replication.
Cell. 2019 Jul 11;178(2):275-289.e16. doi: 10.1016/j.cell.2019.05.030. Epub 2019 Jun 13.
10
Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E12015-E12023. doi: 10.1073/pnas.1717944115. Epub 2018 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验