Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.
Department of Medical Imaging, Affiliated Hospital of Jiangnan University, Wuxi, 214041, Jiangsu, China.
Eur Radiol. 2020 Nov;30(11):5841-5851. doi: 10.1007/s00330-020-06964-w. Epub 2020 May 28.
This study investigated the impact of machine learning (ML)-based fractional flow reserve derived from computed tomography (FFR) compared to invasive coronary angiography (ICA) for therapeutic decision-making and patient outcome in patients with suspected coronary artery disease (CAD).
One thousand one hundred twenty-one consecutive patients with stable chest pain who underwent coronary computed tomography angiography (CCTA) followed ICA within 90 days between January 2007 and December 2016 were included in this retrospective study. Medical records were reviewed for the endpoint of major adverse cardiac events (MACEs). FFR values were calculated using an artificial intelligence (AI) ML platform. Disagreements between hemodynamic significant stenosis via FFR and severe stenosis on qualitative CCTA and ICA were also evaluated.
After FFR results were revealed, a change in the proposed treatment regimen chosen based on ICA results was seen in 167 patients (14.9%). Over a median follow-up time of 26 months (4-48 months), FFR ≤ 0.80 was associated with MACE (HR, 6.84 (95% CI, 3.57 to 13.11); p < 0.001), with superior prognostic value compared to severe stenosis on ICA (HR, 1.84 (95% CI, 1.24 to 2.73), p = 0.002) and CCTA (HR, 1.47 (95% CI, 1.01 to 2.14, p = 0.045). Reserving ICA and revascularization for vessels with positive FFR could have reduced the rate of ICA by 54.5% and lead to 4.4% fewer percutaneous interventions.
This study indicated ML-based FFR had superior prognostic value when compared to severe anatomic stenosis on CCTA and adding FFR may direct therapeutic decision-making with the potential to improve efficiency of ICA.
• ML-based FFR shows superior outcome prediction value when compared to severe anatomic stenosis on CCTA. • FFR noninvasively informs therapeutic decision-making with potential to change diagnostic workflows and enhance efficiencies in patients with suspected CAD. • Reserving ICA and revascularization for vessels with positive FFR may reduce the normalcy rate of ICA and improve its efficiency.
本研究旨在探讨基于机器学习(ML)的冠状动脉计算机断层扫描血管造影(CTA)得出的血流储备分数(FFR)与有创冠状动脉造影(ICA)相比,在疑似冠心病(CAD)患者的治疗决策和患者预后方面的影响。
本回顾性研究纳入了 2007 年 1 月至 2016 年 12 月期间连续 1121 例因稳定型胸痛而行 CTA 检查并在 90 天内行 ICA 检查的患者。回顾病历资料以明确主要不良心脏事件(MACE)终点。通过人工智能(AI)ML 平台计算 FFR 值。还评估了 FFR 显示的血流动力学显著狭窄与定性 CTA 和 ICA 上的严重狭窄之间的不一致性。
在 FFR 结果公布后,根据 ICA 结果改变了拟议的治疗方案,167 例患者(14.9%)发生了这种改变。在中位数为 26 个月(4-48 个月)的随访期间,FFR≤0.80 与 MACE 相关(HR,6.84(95%CI,3.57 至 13.11);p<0.001),与 ICA 上严重狭窄(HR,1.84(95%CI,1.24 至 2.73),p=0.002)和 CTA(HR,1.47(95%CI,1.01 至 2.14,p=0.045)相比,FFR 具有更好的预后价值。为阳性 FFR 的血管保留 ICA 和血运重建可使 ICA 率降低 54.5%,并使经皮介入治疗减少 4.4%。
本研究表明,与 CTA 上严重的解剖学狭窄相比,基于 ML 的 FFR 具有更好的预后价值,并且添加 FFR 可能有助于指导治疗决策,从而提高 ICA 的效率。
基于 ML 的 FFR 与 CTA 上严重的解剖学狭窄相比,具有更好的预后预测价值。
FFR 无创地为治疗决策提供信息,具有改变诊断工作流程的潜力,并提高疑似 CAD 患者的 ICA 效率。
为阳性 FFR 的血管保留 ICA 和血运重建,可降低 ICA 的正常率,提高其效率。