State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
J Biomater Sci Polym Ed. 2020 Oct;31(14):1770-1792. doi: 10.1080/09205063.2020.1775760. Epub 2020 Jun 10.
Multi-stimuli- responsive mechanical strong stretchable hydrogel has grabbed extensive attention in recent years. Here, a novel stretchable conductive biocompatible near-infrared light(NIR)-/thermal-/pH-/ionic concentration- responsive carboxymethyl chitosan (CMCTs)/graphene oxide (GO)/poly(N-isopropylacrylamide)(PNIPAm) nanocomposite double network hydrogel was fabricated through a simple one-pot free radical polymerization, which is initiated by ultraviolet (UV) light and using N-(3-dimethylaminopropyl)-N-ethylcarbodiimidehydrochloride (EDC) and N,N'-bis(acryloyl)cystamine (BAC) as cross-linkers respectively, instead of toxic organic molecules. When the concentration of CMCTs, GO, EDC and BAC is 22.50, 0.103, 7.50 and 0.467 mg/mL respectively, the obtained hydrogel sample owns the highest tensile strength of 1046 kPa at failure strain of 1286% and a corresponding compressive stress of 2.37 MPa at deformation of 90%. Besides, these hydrogels have an obvious pH-/thermal-/ionic concentration-responsive properties depending on the concentration of the above mentioned factors, and their good conductive property makes them as candidate material for healthcare biosensors. Finally, we attempt to design a novel thermal-/NIR-responsive double network structure bilayer hydrogel, which has the potential use as remote actuator in dangerous places in the future.
多刺激响应机械强拉伸水凝胶近年来受到广泛关注。在这里,通过简单的一锅自由基聚合,制备了一种新型的拉伸导电生物相容性近红外光(NIR)/热/ pH/离子浓度响应羧甲基壳聚糖(CMCTs)/氧化石墨烯(GO)/聚(N-异丙基丙烯酰胺)(PNIPAm)纳米复合双网络水凝胶,该聚合由紫外(UV)光引发,分别使用 N-(3-二甲氨基丙基)-N-乙基碳二亚胺盐酸盐(EDC)和 N,N'-双(丙烯酰)胱胺(BAC)作为交联剂,而不是有毒的有机分子。当 CMCTs、GO、EDC 和 BAC 的浓度分别为 22.50、0.103、7.50 和 0.467mg/mL 时,所得水凝胶样品在断裂应变为 1286%时具有最高的拉伸强度 1046kPa,在变形 90%时对应的压缩应力为 2.37MPa。此外,这些水凝胶具有明显的 pH/热/离子浓度响应特性,这取决于上述因素的浓度,并且它们良好的导电性使它们成为医疗保健生物传感器的候选材料。最后,我们尝试设计了一种新型的热/NIR 响应双网络结构双层水凝胶,它具有作为未来危险场所远程执行器的潜力。